cal_ppl.py 5.39 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from dataclasses import dataclass
from typing import Any, Dict, Literal, Optional, Sequence

import fire
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import DataCollatorForLanguageModeling, DataCollatorForSeq2Seq

luopl's avatar
luopl committed
26
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
chenych's avatar
chenych committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from llamafactory.extras.constants import IGNORE_INDEX
from llamafactory.hparams import get_train_args
from llamafactory.model import load_model, load_tokenizer


@dataclass
class PairwiseDataCollatorWithPadding(DataCollatorForSeq2Seq):
    r"""
    Data collator for pairwise data.
    """

    train_on_prompt: bool = False

    def __call__(self, features: Sequence[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
        r"""
        Pads batched data to the longest sequence in the batch.

        We generate 2 * n examples where the first n examples represent chosen examples and
        the last n examples represent rejected examples.
        """
        chosen_features = []
        for feature in features:
            prompt_len, answer_len = len(feature["prompt_ids"]), len(feature["chosen_ids"])
            input_ids = feature["prompt_ids"] + feature["chosen_ids"]
            attention_mask = [1] * (prompt_len + answer_len)
            labels = input_ids if self.train_on_prompt else [IGNORE_INDEX] * prompt_len + feature["chosen_ids"]
            chosen_features.append({"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels})

        return super().__call__(chosen_features)


luopl's avatar
luopl committed
58
def calculate_ppl(
chenych's avatar
chenych committed
59
60
61
62
    model_name_or_path: str,
    save_name: str,
    batch_size: int = 4,
    stage: Literal["pt", "sft", "rm"] = "sft",
luopl's avatar
luopl committed
63
    dataset: str = "alpaca_en_demo",
chenych's avatar
chenych committed
64
65
66
67
68
69
70
71
    dataset_dir: str = "data",
    template: str = "default",
    cutoff_len: int = 1024,
    max_samples: Optional[int] = None,
    train_on_prompt: bool = False,
):
    r"""
    Calculates the ppl on the dataset of the pre-trained models.
luopl's avatar
luopl committed
72
    Usage: python cal_ppl.py --model_name_or_path path_to_model --dataset alpaca_en_demo --save_name ppl.json
chenych's avatar
chenych committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    """
    model_args, data_args, training_args, finetuning_args, _ = get_train_args(
        dict(
            stage=stage,
            model_name_or_path=model_name_or_path,
            dataset=dataset,
            dataset_dir=dataset_dir,
            template=template,
            cutoff_len=cutoff_len,
            max_samples=max_samples,
            train_on_prompt=train_on_prompt,
            output_dir="dummy_dir",
            overwrite_cache=True,
            do_train=True,
        )
    )
    tokenizer_module = load_tokenizer(model_args)
    tokenizer = tokenizer_module["tokenizer"]
luopl's avatar
luopl committed
91
92
    template = get_template_and_fix_tokenizer(tokenizer, data_args)
    trainset = get_dataset(template, model_args, data_args, training_args, stage, **tokenizer_module)["train_dataset"]
chenych's avatar
chenych committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    model = load_model(tokenizer, model_args, finetuning_args, is_trainable=False)
    if stage == "pt":
        data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
    elif stage == "sft":
        data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
    elif stage == "rm":
        data_collator = PairwiseDataCollatorWithPadding(
            tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX, train_on_prompt=train_on_prompt
        )
    else:
        raise NotImplementedError("Stage does not supported: {}.".format(stage))

    dataloader = DataLoader(trainset, batch_size, shuffle=False, collate_fn=data_collator, pin_memory=True)
    criterion = torch.nn.CrossEntropyLoss(reduction="none")
    total_ppl = 0
    perplexities = []
    batch: Dict[str, "torch.Tensor"]
    with torch.no_grad():
        for batch in tqdm(dataloader):
            batch = batch.to(model.device)
            outputs = model(**batch)
            shift_logits: "torch.Tensor" = outputs["logits"][..., :-1, :]
            shift_labels: "torch.Tensor" = batch["labels"][..., 1:]
            loss_mask = shift_labels != IGNORE_INDEX
            flatten_logits = shift_logits.contiguous().view(shift_labels.size(0) * shift_labels.size(1), -1)
            flatten_labels = shift_labels.contiguous().view(-1)
            token_logps: "torch.Tensor" = criterion(flatten_logits, flatten_labels)
            token_logps = token_logps.contiguous().view(shift_logits.size(0), -1)
            sentence_logps = (token_logps * loss_mask).sum(-1) / loss_mask.sum(-1)
            total_ppl += sentence_logps.exp().sum().item()
            perplexities.extend(sentence_logps.exp().tolist())

    with open(save_name, "w", encoding="utf-8") as f:
        json.dump(perplexities, f, indent=2)

    print("Average perplexity is {:.2f}".format(total_ppl / len(perplexities)))
    print("Perplexities have been saved at {}.".format(save_name))


if __name__ == "__main__":
luopl's avatar
luopl committed
133
    fire.Fire(calculate_ppl)