README_zh.md 5.18 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
2
我们提供了多样化的大模型微调示例脚本。

luopl's avatar
luopl committed
3
请确保在 `LLaMA-Factory` 目录下执行下述命令。
chenych's avatar
chenych committed
4
5
6
7
8
9
10
11
12
13

## 目录

- [LoRA 微调](#lora-微调)
- [QLoRA 微调](#qlora-微调)
- [全参数微调](#全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)

luopl's avatar
luopl committed
14
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
chenych's avatar
chenych committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

## 示例

### LoRA 微调

#### (增量)预训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```

#### 指令监督微调

```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```

#### 多模态指令监督微调

```bash
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
luopl's avatar
luopl committed
36
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft.yaml
chenych's avatar
chenych committed
37
38
```

luopl's avatar
luopl committed
39
#### DPO/ORPO/SimPO 训练
chenych's avatar
chenych committed
40
41

```bash
luopl's avatar
luopl committed
42
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
chenych's avatar
chenych committed
43
44
```

luopl's avatar
luopl committed
45
#### 多模态 DPO/ORPO/SimPO 训练
chenych's avatar
chenych committed
46
47

```bash
luopl's avatar
luopl committed
48
llamafactory-cli train examples/train_lora/qwen2vl_lora_dpo.yaml
chenych's avatar
chenych committed
49
50
```

luopl's avatar
luopl committed
51
#### 奖励模型训练
chenych's avatar
chenych committed
52
53

```bash
luopl's avatar
luopl committed
54
55
56
57
58
59
60
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```

#### PPO 训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
chenych's avatar
chenych committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
```

#### KTO 训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```

#### 预处理数据集

对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。

```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```

#### 在 MMLU/CMMLU/C-Eval 上评估

```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```

#### 批量预测并计算 BLEU 和 ROUGE 分数

```bash
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```

#### 多机指令监督微调

```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```

#### 使用 DeepSpeed ZeRO-3 平均分配显存

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```

### QLoRA 微调

#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```

#### 基于 4/8 比特 GPTQ 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```

#### 基于 4 比特 AWQ 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```

#### 基于 2 比特 AQLM 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```

### 全参数微调

#### 在单机上进行指令监督微调

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```

#### 在多机上进行指令监督微调

```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```

luopl's avatar
luopl committed
143
144
145
146
147
148
#### 多模态指令监督微调

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2vl_full_sft.yaml
```

chenych's avatar
chenych committed
149
150
151
152
#### 批量预测并计算 BLEU 和 ROUGE 分数

```bash
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
153
```
chenych's avatar
chenych committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

### 合并 LoRA 适配器与模型量化

#### 合并 LoRA 适配器

注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。

```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```

#### 使用 AutoGPTQ 量化模型

```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```

### 推理 LoRA 模型

#### 使用命令行接口

```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```

#### 使用浏览器界面

```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```

#### 启动 OpenAI 风格 API

```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```

### 杂项

#### 使用 GaLore 进行全参数训练

```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```

#### 使用 BAdam 进行全参数训练

```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```

#### 使用 Adam-mini 进行全参数训练

```bash
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```

#### LoRA+ 微调

```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```

#### PiSSA 微调

```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```

#### 深度混合微调

```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```

#### LLaMA-Pro 微调

```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```

#### FSDP+QLoRA 微调

```bash
bash examples/extras/fsdp_qlora/train.sh
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
240
```