test_checkpointing.py 2.53 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch

from llamafactory.extras.misc import get_current_device
from llamafactory.train.test_utils import load_train_model


luopl's avatar
luopl committed
23
TINY_LLAMA = os.getenv("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
chenych's avatar
chenych committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

TRAIN_ARGS = {
    "model_name_or_path": TINY_LLAMA,
    "stage": "sft",
    "do_train": True,
    "finetuning_type": "lora",
    "lora_target": "all",
    "dataset": "llamafactory/tiny-supervised-dataset",
    "dataset_dir": "ONLINE",
    "template": "llama3",
    "cutoff_len": 1024,
    "overwrite_cache": True,
    "output_dir": "dummy_dir",
    "overwrite_output_dir": True,
    "fp16": True,
}


def test_checkpointing_enable():
    model = load_train_model(disable_gradient_checkpointing=False, **TRAIN_ARGS)
    for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
        assert getattr(module, "gradient_checkpointing") is True


def test_checkpointing_disable():
    model = load_train_model(disable_gradient_checkpointing=True, **TRAIN_ARGS)
    for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
        assert getattr(module, "gradient_checkpointing") is False


luopl's avatar
luopl committed
54
55
56
def test_unsloth_gradient_checkpointing():
    model = load_train_model(use_unsloth_gc=True, **TRAIN_ARGS)
    for module in filter(lambda m: hasattr(m, "gradient_checkpointing"), model.modules()):
luopl's avatar
luopl committed
57
        assert module._gradient_checkpointing_func.__self__.__name__ == "UnslothGradientCheckpointing"
luopl's avatar
luopl committed
58
59


chenych's avatar
chenych committed
60
61
62
63
64
65
66
67
68
69
70
71
def test_upcast_layernorm():
    model = load_train_model(upcast_layernorm=True, **TRAIN_ARGS)
    for name, param in model.named_parameters():
        if param.ndim == 1 and "norm" in name:
            assert param.dtype == torch.float32


def test_upcast_lmhead_output():
    model = load_train_model(upcast_lmhead_output=True, **TRAIN_ARGS)
    inputs = torch.randn((1, 16), dtype=torch.float16, device=get_current_device())
    outputs: "torch.Tensor" = model.get_output_embeddings()(inputs)
    assert outputs.dtype == torch.float32