valuehead.py 2.7 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import TYPE_CHECKING, Dict

import torch
from transformers.utils import cached_file

luopl's avatar
luopl committed
20
from ...extras import logging
chenych's avatar
chenych committed
21
22
23
24
25
26
27
28
29
from ...extras.constants import V_HEAD_SAFE_WEIGHTS_NAME, V_HEAD_WEIGHTS_NAME


if TYPE_CHECKING:
    from transformers import PreTrainedModel

    from ...hparams import ModelArguments


luopl's avatar
luopl committed
30
logger = logging.get_logger(__name__)
chenych's avatar
chenych committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
    r"""
    Loads value head parameters from Hugging Face Hub or local disk.

    Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
    """
    kwargs = {"path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir, "token": model_args.hf_hub_token}
    err_text = ""

    try:
        from safetensors import safe_open

        vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
        with safe_open(vhead_file, framework="pt", device="cpu") as f:
            return {key: f.get_tensor(key) for key in f.keys()}
    except Exception as err:
        err_text = str(err)

    try:
        vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
        return torch.load(vhead_file, map_location="cpu")
    except Exception as err:
        err_text = str(err)

luopl's avatar
luopl committed
57
58
    logger.info_rank0(f"Provided path ({path_or_repo_id}) does not contain value head weights: {err_text}.")
    logger.info_rank0("Ignore the above message if you are not resuming the training of a value head model.")
chenych's avatar
chenych committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    return None


def prepare_valuehead_model(model: "PreTrainedModel") -> None:
    if getattr(model.config, "model_type", None) == "llava":
        setattr(model, "lm_head", model.language_model.get_output_embeddings())
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "chatglm":
        setattr(model, "lm_head", model.transformer.output_layer)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])

    if getattr(model.config, "model_type", None) == "internlm2":
        setattr(model, "lm_head", model.output)
        setattr(model, "_keys_to_ignore_on_save", ["lm_head.weight"])