length_cdf.py 2.34 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
14
15
16
17
18
19

from collections import defaultdict

import fire
from tqdm import tqdm

luopl's avatar
luopl committed
20
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
chenych's avatar
chenych committed
21
22
from llamafactory.hparams import get_train_args
from llamafactory.model import load_tokenizer
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25
26


def length_cdf(
    model_name_or_path: str,
luopl's avatar
luopl committed
27
    dataset: str = "alpaca_en_demo",
chenych's avatar
chenych committed
28
29
30
    dataset_dir: str = "data",
    template: str = "default",
    interval: int = 1000,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
31
):
chenych's avatar
chenych committed
32
33
    r"""
    Calculates the distribution of the input lengths in the dataset.
luopl's avatar
luopl committed
34
    Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en_demo --template default
chenych's avatar
chenych committed
35
    """
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
36
37
38
39
40
41
42
43
44
45
    model_args, data_args, training_args, _, _ = get_train_args(
        dict(
            stage="sft",
            model_name_or_path=model_name_or_path,
            dataset=dataset,
            dataset_dir=dataset_dir,
            template=template,
            cutoff_len=1_000_000,
            output_dir="dummy_dir",
            overwrite_cache=True,
chenych's avatar
chenych committed
46
            do_train=True,
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
47
48
        )
    )
chenych's avatar
chenych committed
49
    tokenizer_module = load_tokenizer(model_args)
luopl's avatar
luopl committed
50
51
    template = get_template_and_fix_tokenizer(tokenizer_module["tokenizer"], data_args)
    trainset = get_dataset(template, model_args, data_args, training_args, "sft", **tokenizer_module)["train_dataset"]
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
52
53
54
55
56
57
58
59
60
61
62
    total_num = len(trainset)
    length_dict = defaultdict(int)
    for sample in tqdm(trainset["input_ids"]):
        length_dict[len(sample) // interval * interval] += 1

    length_tuples = list(length_dict.items())
    length_tuples.sort()
    count_accu, prob_accu = 0, 0
    for length, count in length_tuples:
        count_accu += count
        prob_accu += count / total_num * 100
luopl's avatar
luopl committed
63
        print(f"{count_accu:d} ({prob_accu:.2f}%) samples have length < {length + interval}.")
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
64
65
66
67


if __name__ == "__main__":
    fire.Fire(length_cdf)