belle_multiturn.py 2.69 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import json
import os

import datasets


_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")

_DESCRIPTION = "BELLE multiturn chat dataset."

_CITATION = """\
@article{belle2023exploring,
  title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases},
  author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
  journal={arXiv preprint arXiv:2303.14742},
  year={2023}
}
"""

luopl's avatar
luopl committed
20
_HOMEPAGE = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
21
_LICENSE = "gpl-3.0"
luopl's avatar
luopl committed
22
_URL = f"{_HF_ENDPOINT}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json"
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40


class BelleMultiturn(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.0.0")

    def _info(self):
        features = datasets.Features(
            {"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        file_path = dl_manager.download(_URL)
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]

    def _generate_examples(self, filepath: str):
luopl's avatar
luopl committed
41
        with open(filepath, encoding="utf-8") as f:
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
            for key, row in enumerate(f):
                data = json.loads(row)
                conversations = []
                prompt = data["instruction"].strip()
                response = data["output"].strip()

                assist_idx = prompt.rfind("Assistant:")
                human_idx = prompt.rfind("Human:")
                query = prompt[human_idx + 6 : assist_idx].strip()
                prompt = prompt[:human_idx].strip()
                conversations.insert(0, {"from": "gpt", "value": response})
                conversations.insert(0, {"from": "human", "value": query})

                while prompt.rfind("Assistant:") != -1:
                    assist_idx = prompt.rfind("Assistant:")
                    human_idx = prompt.rfind("Human:")
                    if human_idx != -1:
                        old_query = prompt[human_idx + 6 : assist_idx].strip()
                        old_resp = prompt[assist_idx + 10 :].strip()
                        conversations.insert(0, {"from": "gpt", "value": old_resp})
                        conversations.insert(0, {"from": "human", "value": old_query})
                    else:
                        break
                    prompt = prompt[:human_idx].strip()

                yield key, {"conversations": conversations}