README_zh.md 6.11 KB
Newer Older
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
1
2
我们提供了多样化的大模型微调示例脚本。

luopl's avatar
luopl committed
3
请确保在 `LLaMA-Factory` 目录下执行下述命令。
chenych's avatar
chenych committed
4
5
6
7
8
9
10
11
12
13

## 目录

- [LoRA 微调](#lora-微调)
- [QLoRA 微调](#qlora-微调)
- [全参数微调](#全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)

luopl's avatar
luopl committed
14
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
chenych's avatar
chenych committed
15

luopl's avatar
luopl committed
16
17
LLaMA-Factory 默认使用所有可见的计算设备。

chenych's avatar
chenych committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
基础用法:

```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```

高级用法:

```bash
CUDA_VISIBLE_DEVICES=0,1 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml \
    learning_rate=1e-5 \
    logging_steps=1
```

```bash
bash examples/train_lora/llama3_lora_sft.sh
```

chenych's avatar
chenych committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
## 示例

### LoRA 微调

#### (增量)预训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```

#### 指令监督微调

```bash
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```

#### 多模态指令监督微调

```bash
chenych's avatar
chenych committed
55
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_sft.yaml
chenych's avatar
chenych committed
56
57
```

luopl's avatar
luopl committed
58
#### DPO/ORPO/SimPO 训练
chenych's avatar
chenych committed
59
60

```bash
luopl's avatar
luopl committed
61
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
chenych's avatar
chenych committed
62
63
```

luopl's avatar
luopl committed
64
#### 多模态 DPO/ORPO/SimPO 训练
chenych's avatar
chenych committed
65
66

```bash
chenych's avatar
chenych committed
67
llamafactory-cli train examples/train_lora/qwen2_5vl_lora_dpo.yaml
chenych's avatar
chenych committed
68
69
```

luopl's avatar
luopl committed
70
#### 奖励模型训练
chenych's avatar
chenych committed
71
72

```bash
luopl's avatar
luopl committed
73
74
75
76
77
78
79
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```

#### PPO 训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
chenych's avatar
chenych committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
```

#### KTO 训练

```bash
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```

#### 预处理数据集

对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。

```bash
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```

#### 在 MMLU/CMMLU/C-Eval 上评估

```bash
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```

#### 多机指令监督微调

```bash
luopl's avatar
luopl committed
105
106
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
chenych's avatar
chenych committed
107
108
109
110
111
112
113
114
```

#### 使用 DeepSpeed ZeRO-3 平均分配显存

```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```

luopl's avatar
luopl committed
115
116
117
#### 使用 Ray 在 4 张 GPU 上微调

```bash
chenych's avatar
chenych committed
118
USE_RAY=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ray.yaml
luopl's avatar
luopl committed
119
120
```

chenych's avatar
chenych committed
121
122
123
124
125
126
127
128
### QLoRA 微调

#### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐)

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml
```

luopl's avatar
luopl committed
129
130
131
132
133
134
#### 在 NPU 上基于 4 比特 Bitsandbytes 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bnb_npu.yaml
```

chenych's avatar
chenych committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```

#### 基于 4 比特 AWQ 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```

#### 基于 2 比特 AQLM 量化进行指令监督微调

```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```

### 全参数微调

#### 在单机上进行指令监督微调

```bash
luopl's avatar
luopl committed
158
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
chenych's avatar
chenych committed
159
160
161
162
163
```

#### 在多机上进行指令监督微调

```bash
luopl's avatar
luopl committed
164
165
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
chenych's avatar
chenych committed
166
167
```

luopl's avatar
luopl committed
168
169
170
#### 多模态指令监督微调

```bash
chenych's avatar
chenych committed
171
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/qwen2_5vl_full_sft.yaml
luopl's avatar
luopl committed
172
173
```

chenych's avatar
chenych committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
### 合并 LoRA 适配器与模型量化

#### 合并 LoRA 适配器

注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。

```bash
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```

#### 使用 AutoGPTQ 量化模型

```bash
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```

chenych's avatar
chenych committed
190
191
192
193
194
195
### 保存 Ollama 配置文件

```bash
llamafactory-cli export examples/merge_lora/llama3_full_sft.yaml
```

chenych's avatar
chenych committed
196
197
### 推理 LoRA 模型

chenych's avatar
chenych committed
198
#### 使用 vLLM 多卡推理评估
luopl's avatar
luopl committed
199
200

```
chenych's avatar
chenych committed
201
202
python scripts/vllm_infer.py --model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct --template llama3 --dataset alpaca_en_demo
python scripts/eval_bleu_rouge.py generated_predictions.jsonl
luopl's avatar
luopl committed
203
204
205
```

#### 使用命令行对话框
chenych's avatar
chenych committed
206
207
208
209
210

```bash
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```

luopl's avatar
luopl committed
211
#### 使用浏览器对话框
chenych's avatar
chenych committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

```bash
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```

#### 启动 OpenAI 风格 API

```bash
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```

### 杂项

#### 使用 GaLore 进行全参数训练

```bash
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```

luopl's avatar
luopl committed
231
232
233
234
235
236
#### 使用 APOLLO 进行全参数训练

```bash
llamafactory-cli train examples/extras/apollo/llama3_full_sft.yaml
```

chenych's avatar
chenych committed
237
238
239
240
241
242
243
244
245
246
247
248
#### 使用 BAdam 进行全参数训练

```bash
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```

#### 使用 Adam-mini 进行全参数训练

```bash
llamafactory-cli train examples/extras/adam_mini/qwen2_full_sft.yaml
```

chenych's avatar
chenych committed
249
250
251
252
253
254
#### 使用 Muon 进行全参数训练

```bash
llamafactory-cli train examples/extras/muon/qwen2_full_sft.yaml
```

chenych's avatar
chenych committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#### LoRA+ 微调

```bash
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```

#### PiSSA 微调

```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```

#### 深度混合微调

```bash
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```

#### LLaMA-Pro 微调

```bash
bash examples/extras/llama_pro/expand.sh
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```

#### FSDP+QLoRA 微调

```bash
bash examples/extras/fsdp_qlora/train.sh
Rayyyyy's avatar
V0.6.3  
Rayyyyy committed
284
```