You need to sign in or sign up before continuing.
README.md 15 KB
Newer Older
xuwx1's avatar
xuwx1 committed
1
2
<div align="center" style="font-family: charter;">
  <h1>⚡️ LightX2V:<br> 轻量级视频生成推理框架</h1>
dcuai's avatar
dcuai committed
3

xuwx1's avatar
xuwx1 committed
4
<img alt="logo" src="assets/img_lightx2v.png" width=75%></img>
xuwx1's avatar
xuwx1 committed
5

xuwx1's avatar
xuwx1 committed
6
7
8
9
10
11
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/ModelTC/lightx2v)
[![Doc](https://img.shields.io/badge/docs-English-99cc2)](https://lightx2v-en.readthedocs.io/en/latest)
[![Doc](https://img.shields.io/badge/文档-中文-99cc2)](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest)
[![Papers](https://img.shields.io/badge/论文集-中文-99cc2)](https://lightx2v-papers-zhcn.readthedocs.io/zh-cn/latest)
[![Docker](https://img.shields.io/badge/Docker-2496ED?style=flat&logo=docker&logoColor=white)](https://hub.docker.com/r/lightx2v/lightx2v/tags)
xuwx1's avatar
xuwx1 committed
12

xuwx1's avatar
xuwx1 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
</div>

--------------------------------------------------------------------------------

**LightX2V** 是一个先进的轻量级视频生成推理框架,专为提供高效、高性能的视频合成解决方案而设计。该统一平台集成了多种前沿的视频生成技术,支持文本生成视频(T2V)和图像生成视频(I2V)等多样化生成任务。**X2V 表示将不同的输入模态(X,如文本或图像)转换为视频输出(V)**

> 🌐 **立即在线体验!** 无需安装即可体验 LightX2V:**[LightX2V 在线服务](https://x2v.light-ai.top/login)** - 免费、轻量、快速的AI数字人视频生成平台。

## :fire: 最新动态

- **2025年12月4日:** 🚀 支持 GGUF 格式模型推理,以及在寒武纪 MLU590、MetaX C500 硬件上的部署。

- **2025年11月24日:** 🚀 我们发布了HunyuanVideo-1.5的4步蒸馏模型!这些模型支持**超快速4步推理**,无需CFG配置,相比标准50步推理可实现约**25倍加速**。现已提供基础版本和FP8量化版本:[Hy1.5-Distill-Models](https://huggingface.co/lightx2v/Hy1.5-Distill-Models)

- **2025年11月21日:** 🚀 我们Day0支持了[HunyuanVideo-1.5](https://huggingface.co/tencent/HunyuanVideo-1.5)的视频生成模型,同样GPU数量,LightX2V可带来约2倍以上的速度提升,并支持更低显存GPU部署(如24G RTX4090)。支持CFG并行/Ulysses并行,高效Offload,TeaCache/MagCache等技术。同时支持沐曦,寒武纪等国产芯片部署。我们很快将在我们的[HuggingFace主页](https://huggingface.co/lightx2v)更新更多模型,包括步数蒸馏,VAE蒸馏等相关模型。量化模型和轻量VAE模型现已可用:[Hy1.5-Quantized-Models](https://huggingface.co/lightx2v/Hy1.5-Quantized-Models)用于量化推理,[HunyuanVideo-1.5轻量TAE](https://huggingface.co/lightx2v/Autoencoders/blob/main/lighttaehy1_5.safetensors)用于快速VAE解码。使用教程参考[这里](https://github.com/ModelTC/LightX2V/tree/main/scripts/hunyuan_video_15),或查看[示例目录](https://github.com/ModelTC/LightX2V/tree/main/examples)获取代码示例。


## 🏆 性能测试数据 (更新于 2025.12.01)

### 📊 推理框架之间性能对比 (H100)

| Framework | GPUs | Step Time | Speedup |
|-----------|---------|---------|---------|
| Diffusers | 1 | 9.77s/it | 1x |
| xDiT | 1 | 8.93s/it | 1.1x |
| FastVideo | 1 | 7.35s/it | 1.3x |
| SGL-Diffusion | 1 | 6.13s/it | 1.6x |
| **LightX2V** | 1 | **5.18s/it** | **1.9x** 🚀 |
| FastVideo | 8 | 2.94s/it | 1x |
| xDiT | 8 | 2.70s/it | 1.1x |
| SGL-Diffusion | 8 | 1.19s/it | 2.5x |
| **LightX2V** | 8 | **0.75s/it** | **3.9x** 🚀 |

### 📊 推理框架之间性能对比 (RTX 4090D)

| Framework | GPUs | Step Time | Speedup |
|-----------|---------|---------|---------|
| Diffusers | 1 | 30.50s/it | 1x |
| FastVideo | 1 | 22.66s/it | 1.3x |
| xDiT | 1 | OOM | OOM |
| SGL-Diffusion | 1 | OOM | OOM |
| **LightX2V** | 1 | **20.26s/it** | **1.5x** 🚀 |
| FastVideo | 8 | 15.48s/it | 1x |
| xDiT | 8 | OOM | OOM |
| SGL-Diffusion | 8 | OOM | OOM |
| **LightX2V** | 8 | **4.75s/it** | **3.3x** 🚀 |
xuwx1's avatar
xuwx1 committed
59

xuwx1's avatar
xuwx1 committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
### 📊 LightX2V不同配置之间性能对比

| Framework | GPU | Configuration | Step Time | Speedup |
|-----------|-----|---------------|-----------|---------------|
| **LightX2V** | H100 | 8 GPUs + cfg | 0.75s/it | 1x |
| **LightX2V** | H100 | 8 GPUs + no cfg | 0.39s/it | 1.9x |
| **LightX2V** | H100 | **8 GPUs + no cfg + fp8** | **0.35s/it** | **2.1x** 🚀 |
| **LightX2V** | 4090D | 8 GPUs + cfg | 4.75s/it | 1x |
| **LightX2V** | 4090D | 8 GPUs + no cfg | 3.13s/it | 1.5x |
| **LightX2V** | 4090D | **8 GPUs + no cfg + fp8** | **2.35s/it** | **2.0x** 🚀 |

**注意**: 所有以上性能数据均在 Wan2.1-I2V-14B-480P(40 steps, 81 frames) 上测试。此外,我们[HuggingFace 主页](https://huggingface.co/lightx2v)还提供了4步蒸馏模型。


## 💡 快速开始


详细使用说明请参考我们的文档:**[英文文档](https://lightx2v-en.readthedocs.io/en/latest/) | [中文文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/)**

**我们强烈推荐使用 Docker 环境,这是最简单快捷的环境安装方式。具体参考:文档中的快速入门章节。**

### 从 Git 安装
xuwx1's avatar
xuwx1 committed
82
```bash
xuwx1's avatar
xuwx1 committed
83
pip install -v git+https://github.com/ModelTC/LightX2V.git
xuwx1's avatar
xuwx1 committed
84
85
```

xuwx1's avatar
xuwx1 committed
86
### 从源码构建
xuwx1's avatar
xuwx1 committed
87
```bash
xuwx1's avatar
xuwx1 committed
88
89
90
git clone https://github.com/ModelTC/LightX2V.git
cd LightX2V
uv pip install -v . # pip install -v .
xuwx1's avatar
xuwx1 committed
91
92
```

xuwx1's avatar
xuwx1 committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
### (可选)安装注意力/量化算子
注意力算子安装说明请参考我们的文档:**[英文文档](https://lightx2v-en.readthedocs.io/en/latest/getting_started/quickstart.html#step-4-install-attention-operators) | [中文文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/quickstart.html#id9)**

### 使用示例
```python
# examples/wan/wan_i2v.py
"""
Wan2.2 image-to-video generation example.
This example demonstrates how to use LightX2V with Wan2.2 model for I2V generation.
"""

from lightx2v import LightX2VPipeline

# Initialize pipeline for Wan2.2 I2V task
# For wan2.1, use model_cls="wan2.1"
pipe = LightX2VPipeline(
    model_path="/path/to/Wan2.2-I2V-A14B",
    model_cls="wan2.2_moe",
    task="i2v",
)

# Alternative: create generator from config JSON file
# pipe.create_generator(
#     config_json="configs/wan22/wan_moe_i2v.json"
# )

# Enable offloading to significantly reduce VRAM usage with minimal speed impact
# Suitable for RTX 30/40/50 consumer GPUs
pipe.enable_offload(
    cpu_offload=True,
    offload_granularity="block",  # For Wan models, supports both "block" and "phase"
    text_encoder_offload=True,
    image_encoder_offload=False,
    vae_offload=False,
)

# Create generator manually with specified parameters
pipe.create_generator(
    attn_mode="sage_attn2",
    infer_steps=40,
    height=480,  # Can be set to 720 for higher resolution
    width=832,  # Can be set to 1280 for higher resolution
    num_frames=81,
    guidance_scale=[3.5, 3.5],  # For wan2.1, guidance_scale is a scalar (e.g., 5.0)
    sample_shift=5.0,
)

# Generation parameters
seed = 42
prompt = "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
negative_prompt = "镜头晃动,色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走"
image_path="/path/to/img_0.jpg"
save_result_path = "/path/to/save_results/output.mp4"

# Generate video
pipe.generate(
    seed=seed,
    image_path=image_path,
    prompt=prompt,
    negative_prompt=negative_prompt,
    save_result_path=save_result_path,
)
xuwx1's avatar
xuwx1 committed
155

xuwx1's avatar
xuwx1 committed
156
```
xuwx1's avatar
xuwx1 committed
157

xuwx1's avatar
xuwx1 committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
> 💡 **更多示例**: 更多使用案例,包括量化、卸载、缓存等进阶配置,请参考 [examples 目录](https://github.com/ModelTC/LightX2V/tree/main/examples)。

## 🤖 支持的模型生态

### 官方开源模型
-[HunyuanVideo-1.5](https://huggingface.co/tencent/HunyuanVideo-1.5)
-[Wan2.1 & Wan2.2](https://huggingface.co/Wan-AI/)
-[Qwen-Image](https://huggingface.co/Qwen/Qwen-Image)
-[Qwen-Image-Edit](https://huggingface.co/spaces/Qwen/Qwen-Image-Edit)
-[Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509)

### 量化模型和蒸馏模型/Lora (**🚀 推荐:4步推理**)
-[Wan2.1-Distill-Models](https://huggingface.co/lightx2v/Wan2.1-Distill-Models)
-[Wan2.2-Distill-Models](https://huggingface.co/lightx2v/Wan2.2-Distill-Models)
-[Wan2.1-Distill-Loras](https://huggingface.co/lightx2v/Wan2.1-Distill-Loras)
-[Wan2.2-Distill-Loras](https://huggingface.co/lightx2v/Wan2.2-Distill-Loras)

### 轻量级自编码器模型(**🚀 推荐:推理快速 + 内存占用低**)
-[Autoencoders](https://huggingface.co/lightx2v/Autoencoders)

### 自回归模型
-[Wan2.1-T2V-CausVid](https://huggingface.co/lightx2v/Wan2.1-T2V-14B-CausVid)
-[Self-Forcing](https://github.com/guandeh17/Self-Forcing)
-[Matrix-Game-2.0](https://huggingface.co/Skywork/Matrix-Game-2.0)

🔔 可以关注我们的[HuggingFace主页](https://huggingface.co/lightx2v),及时获取我们团队的模型。

💡 参考[模型结构文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/getting_started/model_structure.html)快速上手 LightX2V

## 🚀 前端展示

我们提供了多种前端界面部署方式:

- **🎨 Gradio界面**: 简洁易用的Web界面,适合快速体验和原型开发
  - 📖 [Gradio部署文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/deploy_gradio.html)
- **🎯 ComfyUI界面**: 强大的节点式工作流界面,支持复杂的视频生成任务
  - 📖 [ComfyUI部署文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/deploy_comfyui.html)
- **🚀 Windows一键部署**: 专为Windows用户设计的便捷部署方案,支持自动环境配置和智能参数优化
  - 📖 [Windows一键部署文档](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/deploy_local_windows.html)

**💡 推荐方案**:
- **首次使用**: 建议选择Windows一键部署方案
- **高级用户**: 推荐使用ComfyUI界面获得更多自定义选项
- **快速体验**: Gradio界面提供最直观的操作体验

## 🚀 核心特性

### 🎯 **极致性能优化**
- **🔥 SOTA推理速度**: 通过步数蒸馏和系统优化实现**20倍**极速加速(单GPU)
- **⚡️ 革命性4步蒸馏**: 将原始40-50步推理压缩至仅需4步,且无需CFG配置
- **🛠️ 先进算子支持**: 集成顶尖算子,包括[Sage Attention](https://github.com/thu-ml/SageAttention)[Flash Attention](https://github.com/Dao-AILab/flash-attention)[Radial Attention](https://github.com/mit-han-lab/radial-attention)[q8-kernel](https://github.com/KONAKONA666/q8_kernels)[sgl-kernel](https://github.com/sgl-project/sglang/tree/main/sgl-kernel)[vllm](https://github.com/vllm-project/vllm)

### 💾 **资源高效部署**
- **💡 突破硬件限制**: **仅需8GB显存 + 16GB内存**即可运行14B模型生成480P/720P视频
- **🔧 智能参数卸载**: 先进的磁盘-CPU-GPU三级卸载架构,支持阶段/块级别的精细化管理
- **⚙️ 全面量化支持**: 支持`w8a8-int8``w8a8-fp8``w4a4-nvfp4`等多种量化策略

### 🎨 **丰富功能生态**
- **📈 智能特征缓存**: 智能缓存机制,消除冗余计算,提升效率
- **🔄 并行推理加速**: 多GPU并行处理,显著提升性能表现
- **📱 灵活部署选择**: 支持Gradio、服务化部署、ComfyUI等多种部署方式
- **🎛️ 动态分辨率推理**: 自适应分辨率调整,优化生成质量
- **🎞️ 视频帧插值**: 基于RIFE的帧插值技术,实现流畅的帧率提升


## 📚 技术文档

### 📖 **方法教程**
- [模型量化](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/quantization.html) - 量化策略全面指南
- [特征缓存](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/cache.html) - 智能缓存机制详解
- [注意力机制](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/attention.html) - 前沿注意力算子
- [参数卸载](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/offload.html) - 三级存储架构
- [并行推理](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/parallel.html) - 多GPU加速策略
- [变分辨率推理](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/changing_resolution.html) - U型分辨率策略
- [步数蒸馏](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/step_distill.html) - 4步推理技术
- [视频帧插值](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/method_tutorials/video_frame_interpolation.html) - 基于RIFE的帧插值技术

### 🛠️ **部署指南**
- [低资源场景部署](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/for_low_resource.html) - 优化的8GB显存解决方案
- [低延迟场景部署](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/for_low_latency.html) - 极速推理优化
- [Gradio部署](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/deploy_gradio.html) - Web界面搭建
- [服务化部署](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/deploy_service.html) - 生产级API服务部署
- [Lora模型部署](https://lightx2v-zhcn.readthedocs.io/zh-cn/latest/deploy_guides/lora_deploy.html) - Lora灵活部署

## 🧾 代码贡献指南

我们通过自动化的预提交钩子来保证代码质量,确保项目代码格式的一致性。

> [!TIP]
> **安装说明:**
>
> 1. 安装必要的依赖:
> ```shell
> pip install ruff pre-commit
> ```
>
> 2. 提交前运行:
> ```shell
> pre-commit run --all-files
> ```

感谢您为LightX2V的改进做出贡献!

## 🤝 致谢

我们向所有启发和促进LightX2V开发的模型仓库和研究社区表示诚挚的感谢。此框架基于开源社区的集体努力而构建。

## 🌟 Star 历史

[![Star History Chart](https://api.star-history.com/svg?repos=ModelTC/lightx2v&type=Timeline)](https://star-history.com/#ModelTC/lightx2v&Timeline)

## ✏️ 引用

如果您发现LightX2V对您的研究有用,请考虑引用我们的工作:

```bibtex
@misc{lightx2v,
 author = {LightX2V Contributors},
 title = {LightX2V: Light Video Generation Inference Framework},
 year = {2025},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/ModelTC/lightx2v}},
}
xuwx1's avatar
xuwx1 committed
282
```
xuwx1's avatar
xuwx1 committed
283

xuwx1's avatar
xuwx1 committed
284
285
286
287
288
289
290
291
292
293
## 📞 联系与支持

如有任何问题、建议或需要支持,欢迎通过以下方式联系我们:
- 🐛 [GitHub Issues](https://github.com/ModelTC/lightx2v/issues) - 错误报告和功能请求

---

<div align="center">
由 LightX2V 团队用 ❤️ 构建
</div>