readme.md 12 KB
Newer Older
xuwx1's avatar
xuwx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Model Conversion Tool

A powerful model weight conversion tool that supports format conversion, quantization, LoRA merging, and more.

## Main Features

- **Format Conversion**: Support PyTorch (.pth) and SafeTensors (.safetensors) format conversion
- **Model Quantization**: Support INT8, FP8, NVFP4, MXFP4, MXFP6 and MXFP8 quantization to significantly reduce model size
- **Architecture Conversion**: Support conversion between LightX2V and Diffusers architectures
- **LoRA Merging**: Support loading and merging multiple LoRA formats
- **Multi-Model Support**: Support Wan DiT, Qwen Image DiT, T5, CLIP, etc.
- **Flexible Saving**: Support single file, block-based, and chunked saving methods
- **Parallel Processing**: Support parallel acceleration for large model conversion

## Supported Model Types

- `hunyuan_dit`: hunyuan DiT 1.5 models
- `wan_dit`: Wan DiT series models (default)
- `wan_animate_dit`: Wan Animate DiT models
- `qwen_image_dit`: Qwen Image DiT models
- `wan_t5`: Wan T5 text encoder
- `wan_clip`: Wan CLIP vision encoder

## Core Parameters

### Basic Parameters

- `-s, --source`: Input path (file or directory)
- `-o, --output`: Output directory path
- `-o_e, --output_ext`: Output format, `.pth` or `.safetensors` (default)
- `-o_n, --output_name`: Output file name (default: `converted`)
- `-t, --model_type`: Model type (default: `wan_dit`)

### Architecture Conversion Parameters

- `-d, --direction`: Conversion direction
  - `None`: No architecture conversion (default)
  - `forward`: LightX2V → Diffusers
  - `backward`: Diffusers → LightX2V

### Quantization Parameters

- `--quantized`: Enable quantization
- `--bits`: Quantization bit width, currently only supports 8-bit
- `--linear_type`: Linear layer quantization type
  - `int8`: INT8 quantization (torch.int8)
  - `fp8`: FP8 quantization (torch.float8_e4m3fn)
  - `nvfp4`: NVFP4 quantization
  - `mxfp4`: MXFP4 quantization
  - `mxfp6`: MXFP6 quantization
  - `mxfp8`: MXFP8 quantization
- `--non_linear_dtype`: Non-linear layer data type
  - `torch.bfloat16`: BF16
  - `torch.float16`: FP16
  - `torch.float32`: FP32 (default)
- `--device`: Device for quantization, `cpu` or `cuda` (default)
- `--comfyui_mode`: ComfyUI compatible mode (only int8 and fp8)
- `--full_quantized`: Full quantization mode (effective in ComfyUI mode)
For nvfp4, mxfp4, mxfp6 and mxfp8, please install them fllowing LightX2V/lightx2v_kernel/README.md.

### LoRA Parameters

- `--lora_path`: LoRA file path(s), supports multiple (separated by spaces)
- `--lora_strength`: LoRA strength coefficients, supports multiple (default: 1.0)
- `--alpha`: LoRA alpha parameters, supports multiple
- `--lora_key_convert`: LoRA key conversion mode
  - `auto`: Auto-detect (default)
  - `same`: Use original key names
  - `convert`: Apply same conversion as model

### Saving Parameters

- `--single_file`: Save as single file (note: large models consume significant memory)
- `-b, --save_by_block`: Save by blocks (recommended for backward conversion)
- `-c, --chunk-size`: Chunk size (default: 100, 0 means no chunking)
- `--copy_no_weight_files`: Copy non-weight files from source directory

### Performance Parameters

- `--parallel`: Enable parallel processing (default: True)
- `--no-parallel`: Disable parallel processing

## Supported LoRA Formats

The tool automatically detects and supports the following LoRA formats:

1. **Standard**: `{key}.lora_up.weight` and `{key}.lora_down.weight`
2. **Diffusers**: `{key}_lora.up.weight` and `{key}_lora.down.weight`
3. **Diffusers V2**: `{key}.lora_B.weight` and `{key}.lora_A.weight`
4. **Diffusers V3**: `{key}.lora.up.weight` and `{key}.lora.down.weight`
5. **Mochi**: `{key}.lora_B` and `{key}.lora_A` (no .weight suffix)
6. **Transformers**: `{key}.lora_linear_layer.up.weight` and `{key}.lora_linear_layer.down.weight`
7. **Qwen**: `{key}.lora_B.default.weight` and `{key}.lora_A.default.weight`

Additionally supports diff formats:
- `.diff`: Weight diff
- `.diff_b`: Bias diff
- `.diff_m`: Modulation diff

## Usage Examples

### 1. Model Quantization

#### 1.1 Wan DiT Quantization to INT8

**Multiple safetensors, saved by dit blocks**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan_int8 \
    --linear_type int8 \
    --model_type wan_dit \
    --quantized \
    --save_by_block
```

**Single safetensor file**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan2.1_i2v_480p_int8_lightx2v \
    --linear_type int8 \
    --model_type wan_dit \
    --quantized \
    --single_file
```

#### 1.2 Wan DiT Quantization to FP8

**Multiple safetensors, saved by dit blocks**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan_fp8 \
    --linear_type fp8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
    --quantized \
    --save_by_block
```

**Single safetensor file**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v \
    --linear_type fp8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
    --quantized \
    --single_file
```

**ComfyUI scaled_fp8 format**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v_comfyui \
    --linear_type fp8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
    --quantized \
    --single_file \
    --comfyui_mode
```

**ComfyUI full FP8 format**
```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name wan2.1_i2v_480p_scaled_fp8_e4m3_lightx2v_comfyui \
    --linear_type fp8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_dit \
    --quantized \
    --single_file \
    --comfyui_mode \
    --full_quantized
```

> **Tip**: For other DIT models, simply switch the `--model_type` parameter

#### 1.3 T5 Encoder Quantization

**INT8 Quantization**
```bash
python converter.py \
    --source /path/to/models_t5_umt5-xxl-enc-bf16.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_t5_umt5-xxl-enc-int8 \
    --linear_type int8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_t5 \
    --quantized
```

**FP8 Quantization**
```bash
python converter.py \
    --source /path/to/models_t5_umt5-xxl-enc-bf16.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_t5_umt5-xxl-enc-fp8 \
    --linear_type fp8 \
    --non_linear_dtype torch.bfloat16 \
    --model_type wan_t5 \
    --quantized
```

#### 1.4 CLIP Encoder Quantization

**INT8 Quantization**
```bash
python converter.py \
    --source /path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_clip_open-clip-xlm-roberta-large-vit-huge-14-int8 \
    --linear_type int8 \
    --non_linear_dtype torch.float16 \
    --model_type wan_clip \
    --quantized
```

**FP8 Quantization**
```bash
python converter.py \
    --source /path/to/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth \
    --output /path/to/output \
    --output_ext .pth \
    --output_name models_clip_open-clip-xlm-roberta-large-vit-huge-14-fp8 \
    --linear_type fp8 \
    --non_linear_dtype torch.float16 \
    --model_type wan_clip \
    --quantized
```



#### 1.5 Qwen25_vl llm Quantization

**INT8 Quantization**
```bash
python converter.py \
    --source /path/to/hunyuanvideo-1.5/text_encoder/llm \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name qwen25vl-llm-int8 \
    --linear_dtype torch.int8 \
    --non_linear_dtype torch.float16 \
    --model_type qwen25vl_llm \
    --quantized \
    --single_file
```

**FP8 Quantization**
```bash
python converter.py \
    --source /path/to/hunyuanvideo-1.5/text_encoder/llm \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name qwen25vl-llm-fp8 \
    --linear_dtype torch.float8_e4m3fn \
    --non_linear_dtype torch.float16 \
    --model_type qwen25vl_llm \
    --quantized \
    --single_file
```

### 2. LoRA Merging

#### 2.1 Merge Single LoRA

```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --single_file
```

#### 2.2 Merge Multiple LoRAs

```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --model_type wan_dit \
    --lora_path /path/to/lora1.safetensors /path/to/lora2.safetensors \
    --lora_strength 1.0 0.8 \
    --single_file
```

#### 2.3 LoRA Merging with Quantization

**LoRA Merge → FP8 Quantization**
```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_type fp8 \
    --single_file
```

**LoRA Merge → ComfyUI scaled_fp8**
```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_type fp8 \
    --single_file \
    --comfyui_mode
```

**LoRA Merge → ComfyUI Full FP8**
```bash
python converter.py \
    --source /path/to/base_model/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_quantized \
    --model_type wan_dit \
    --lora_path /path/to/lora.safetensors \
    --lora_strength 1.0 \
    --quantized \
    --linear_type fp8 \
    --single_file \
    --comfyui_mode \
    --full_quantized
```

#### 2.4 LoRA Key Conversion Modes

**Auto-detect mode (recommended)**
```bash
python converter.py \
    --source /path/to/model/ \
    --output /path/to/output \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert auto \
    --single_file
```

**Use original key names (LoRA already in target format)**
```bash
python converter.py \
    --source /path/to/model/ \
    --output /path/to/output \
    --direction forward \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert same \
    --single_file
```

**Apply conversion (LoRA in source format)**
```bash
python converter.py \
    --source /path/to/model/ \
    --output /path/to/output \
    --direction forward \
    --lora_path /path/to/lora.safetensors \
    --lora_key_convert convert \
    --single_file
```

### 3. Architecture Format Conversion

#### 3.1 LightX2V → Diffusers

```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P \
    --output /path/to/Wan2.1-I2V-14B-480P-Diffusers \
    --output_ext .safetensors \
    --model_type wan_dit \
    --direction forward \
    --chunk-size 100
```

#### 3.2 Diffusers → LightX2V

```bash
python converter.py \
    --source /path/to/Wan2.1-I2V-14B-480P-Diffusers \
    --output /path/to/Wan2.1-I2V-14B-480P \
    --output_ext .safetensors \
    --model_type wan_dit \
    --direction backward \
    --save_by_block
```

### 4. Format Conversion

#### 4.1 .pth → .safetensors

```bash
python converter.py \
    --source /path/to/model.pth \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name model \
    --single_file
```

#### 4.2 Multiple .safetensors → Single File

```bash
python converter.py \
    --source /path/to/model_directory/ \
    --output /path/to/output \
    --output_ext .safetensors \
    --output_name merged_model \
    --single_file
```