converter.py 35.3 KB
Newer Older
xuwx1's avatar
xuwx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
import argparse
import gc
import glob
import json
import multiprocessing
import os
import re
import shutil
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed

import torch
from loguru import logger

try:
    from lora_loader import LoRALoader
except ImportError:
    pass
import sys
from pathlib import Path

from safetensors import safe_open
from safetensors import torch as st
from tqdm import tqdm

sys.path.append(str(Path(__file__).parent.parent.parent))
from lightx2v.utils.registry_factory import CONVERT_WEIGHT_REGISTER
from tools.convert.quant import *

dtype_mapping = {
    "int8": torch.int8,
    "fp8": torch.float8_e4m3fn,
}


def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


def quantize_model(
    weights,
    w_bit=8,
    target_keys=["attn", "ffn"],
    adapter_keys=None,
    key_idx=2,
    ignore_key=None,
    linear_type="int8",
    non_linear_dtype=torch.float,
    comfyui_mode=False,
    comfyui_keys=[],
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
    original_size = 0
    quantized_size = 0
    non_quantized_size = 0
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

            if ignore_key is not None and any(ig_key in key for ig_key in ignore_key):
                del weights[key]
                continue

            tensor = weights[key]

            # Skip non-tensors and non-2D tensors
            if not isinstance(tensor, torch.Tensor) or tensor.dim() != 2:
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
                    non_quantized_size += weights[key].numel() * weights[key].element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
                continue

            # Check if key matches target modules
            parts = key.split(".")

            if comfyui_mode and (comfyui_keys is not None and key in comfyui_keys):
                pass
            elif len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
                if adapter_keys is None:
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                elif not any(adapter_key in parts for adapter_key in adapter_keys):
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
                continue

            # try:
            original_tensor_size = tensor.numel() * tensor.element_size()
            original_size += original_tensor_size

            # Quantize tensor and store results
            quantizer = CONVERT_WEIGHT_REGISTER[linear_type](tensor)
            w_q, scales, extra = quantizer.weight_quant_func(tensor, comfyui_mode)
            weight_global_scale = extra.get("weight_global_scale", None)  # For nvfp4

            # Replace original tensor and store scales
            weights[key] = w_q
            if comfyui_mode:
                weights[key.replace(".weight", ".scale_weight")] = scales
            else:
                weights[key + "_scale"] = scales
            if weight_global_scale:
                weights[key + "_global_scale"] = weight_global_scale

            quantized_tensor_size = w_q.numel() * w_q.element_size()
            scale_size = scales.numel() * scales.element_size()
            quantized_size += quantized_tensor_size + scale_size

            total_quantized += 1
            del w_q, scales

            # except Exception as e:
            #     logger.error(f"Error quantizing {key}: {str(e)}")

            gc.collect()

    original_size_mb = original_size / (1024**2)
    quantized_size_mb = quantized_size / (1024**2)
    non_quantized_size_mb = non_quantized_size / (1024**2)
    total_final_size_mb = (quantized_size + non_quantized_size) / (1024**2)
    size_reduction_mb = original_size_mb - quantized_size_mb

    logger.info(f"Quantized {total_quantized} tensors")
    logger.info(f"Original quantized tensors size: {original_size_mb:.2f} MB")
    logger.info(f"After quantization size: {quantized_size_mb:.2f} MB (includes scales)")
    logger.info(f"Non-quantized tensors size: {non_quantized_size_mb:.2f} MB")
    logger.info(f"Total final model size: {total_final_size_mb:.2f} MB")
    logger.info(f"Size reduction in quantized tensors: {size_reduction_mb:.2f} MB ({size_reduction_mb / original_size_mb * 100:.1f}%)")

    if comfyui_mode:
        weights["scaled_fp8"] = torch.zeros(2, dtype=torch.float8_e4m3fn)

    return weights


def load_loras(lora_path, weight_dict, alpha, key_mapping_rules=None, strength=1.0):
    """
    Load and apply LoRA weights to model weights using the LoRALoader class.

    Args:
        lora_path: Path to LoRA safetensors file
        weight_dict: Model weights dictionary (will be modified in place)
        alpha: Global alpha scaling factor
        key_mapping_rules: Optional list of (pattern, replacement) regex rules for key mapping
        strength: Additional strength factor for LoRA deltas
    """
    logger.info(f"Loading LoRA from: {lora_path} with alpha={alpha}, strength={strength}")

    # Load LoRA weights from safetensors file
    with safe_open(lora_path, framework="pt") as f:
        lora_weights = {k: f.get_tensor(k) for k in f.keys()}

    # Create LoRA loader with key mapping rules
    lora_loader = LoRALoader(key_mapping_rules=key_mapping_rules)

    # Apply LoRA weights to model
    lora_loader.apply_lora(
        weight_dict=weight_dict,
        lora_weights=lora_weights,
        alpha=alpha,
        strength=strength,
    )


def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")

    # Optimize loading for better memory usage
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
            # Use lazy loading for safetensors to reduce memory usage
            with safe_open(file_path, framework="pt") as f:
                # Only load tensors when needed (lazy loading)
                weights = {}
                keys = f.keys()

                # For large files, show progress
                if len(keys) > 100:
                    for k in tqdm(keys, desc=f"Loading {os.path.basename(file_path)}", leave=False):
                        weights[k] = f.get_tensor(k)
                else:
                    weights = {k: f.get_tensor(k) for k in keys}

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")

        # Update weights more efficiently
        merged_weights.update(weights)

        # Clear weights dict to free memory
        del weights
        if len(src_files) > 1:
            gc.collect()  # Force garbage collection between files

    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")

        # Pre-compile regex patterns for better performance
        compiled_rules = [(re.compile(pattern), replacement) for pattern, replacement in rules]

        def convert_key(key):
            """Convert a single key using compiled rules"""
            new_key = key
            for pattern, replacement in compiled_rules:
                new_key = pattern.sub(replacement, new_key)
            return new_key

        # Batch convert keys using list comprehension (faster than loop)
        keys_list = list(merged_weights.keys())

        # Use parallel processing for large models
        if len(keys_list) > 1000 and args.parallel:
            logger.info(f"Using parallel processing for {len(keys_list)} keys")
            # Use ThreadPoolExecutor for I/O bound regex operations
            num_workers = min(8, multiprocessing.cpu_count())

            with ThreadPoolExecutor(max_workers=num_workers) as executor:
                # Submit all conversion tasks
                future_to_key = {executor.submit(convert_key, key): key for key in keys_list}

                # Process results as they complete with progress bar
                for future in tqdm(as_completed(future_to_key), total=len(keys_list), desc="Converting keys (parallel)"):
                    original_key = future_to_key[future]
                    new_key = future.result()
                    converted_weights[new_key] = merged_weights[original_key]
        else:
            # For smaller models, use simple loop with less overhead
            for key in tqdm(keys_list, desc="Converting keys"):
                new_key = convert_key(key)
                converted_weights[new_key] = merged_weights[key]
    else:
        converted_weights = merged_weights

    # Apply LoRA AFTER key conversion to ensure proper key matching
    if args.lora_path is not None:
        # Handle alpha list - if single alpha, replicate for all LoRAs
        if args.lora_alpha is not None:
            if len(args.lora_alpha) == 1 and len(args.lora_path) > 1:
                args.lora_alpha = args.lora_alpha * len(args.lora_path)
            elif len(args.lora_alpha) != len(args.lora_path):
                raise ValueError(f"Number of lora_alpha ({len(args.lora_alpha)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        # Normalize strength list
        if args.lora_strength is not None:
            if len(args.lora_strength) == 1 and len(args.lora_path) > 1:
                args.lora_strength = args.lora_strength * len(args.lora_path)
            elif len(args.lora_strength) != len(args.lora_path):
                raise ValueError(f"Number of strength ({len(args.lora_strength)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        # Determine if we should apply key mapping rules to LoRA keys
        key_mapping_rules = None
        if args.lora_key_convert == "convert" and args.direction is not None:
            # Apply same conversion as model
            key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
            logger.info("Applying key conversion to LoRA weights")
        elif args.lora_key_convert == "same":
            # Don't convert LoRA keys
            logger.info("Using original LoRA keys without conversion")
        else:  # auto
            # Auto-detect: if model was converted, try with conversion first
            if args.direction is not None:
                key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
                logger.info("Auto mode: will try with key conversion first")

        for idx, path in enumerate(args.lora_path):
            # Pass key mapping rules to handle converted keys properly
            strength = args.lora_strength[idx] if args.lora_strength is not None else 1.0
            alpha = args.lora_alpha[idx] if args.lora_alpha is not None else None
            load_loras(path, converted_weights, alpha, key_mapping_rules, strength=strength)

    if args.quantized:
        if args.full_quantized and args.comfyui_mode:
            logger.info("Quant all tensors...")
            assert args.linear_dtype, f"Error: only support 'torch.int8' and 'torch.float8_e4m3fn'."
            for k in converted_weights.keys():
                converted_weights[k] = converted_weights[k].float().to(args.linear_dtype)
        else:
            converted_weights = quantize_model(
                converted_weights,
                w_bit=args.bits,
                target_keys=args.target_keys,
                adapter_keys=args.adapter_keys,
                key_idx=args.key_idx,
                ignore_key=args.ignore_key,
                linear_type=args.linear_type,
                non_linear_dtype=args.non_linear_dtype,
                comfyui_mode=args.comfyui_mode,
                comfyui_keys=args.comfyui_keys,
            )

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}
        if args.single_file:
            output_filename = f"{args.output_name}.safetensors"
            output_path = os.path.join(args.output, output_filename)
            logger.info(f"Saving model to single file: {output_path}")

            # For memory efficiency with large models
            try:
                # If model is very large (over threshold), consider warning
                total_size = sum(tensor.numel() * tensor.element_size() for tensor in converted_weights.values())
                total_size_gb = total_size / (1024**3)

                if total_size_gb > 10:  # Warn if model is larger than 10GB
                    logger.warning(f"Model size is {total_size_gb:.2f}GB. This will require significant memory to save as a single file.")
                    logger.warning("Consider using --save_by_block or default chunked saving for better memory efficiency.")

                # Save the entire model as a single file
                st.save_file(converted_weights, output_path)
                logger.info(f"Model saved successfully to: {output_path} ({total_size_gb:.2f}GB)")

            except MemoryError:
                logger.error("Memory error while saving. The model is too large to save as a single file.")
                logger.error("Please use --save_by_block or remove --single_file to use chunked saving.")
                raise
            except Exception as e:
                logger.error(f"Error saving model: {e}")
                raise
        elif args.save_by_block:
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
                    if args.model_type == "wan_animate_dit" and "face_adapter" in key:
                        block_idx = str(int(block_idx) * 5)
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
                if args.chunk_size > 0 and (idx + 1) % args.chunk_size == 0:
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
        if not args.single_file:
            index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
            with open(index_path, "w", encoding="utf-8") as f:
                json.dump(index, f, indent=2)
            logger.info(f"Index file written to: {index_path}")

    if os.path.isdir(args.source) and args.copy_no_weight_files:
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
    ignore_extensions = [".pth", ".pt", ".safetensors", ".index.json"]

    logger.info(f"Start copying non-weighted files and subdirectories...")

    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
                logger.debug(f"copy file: {source_item} -> {target_item}")
        except Exception as e:
            logger.error(f"copy {source_item} : {str(e)}")

    logger.info(f"Non-weight files and subdirectories copied")


def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip", "wan_animate_dit", "qwen_image_dit", "qwen25vl_llm"],
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
    parser.add_argument("--comfyui_mode", action="store_true")
    parser.add_argument("--full_quantized", action="store_true")
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--device",
        type=str,
        default="cuda",
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
        "--linear_type",
        type=str,
        choices=["int8", "fp8", "nvfp4", "mxfp4", "mxfp6", "mxfp8"],
        help="Quant type for linear",
    )
    parser.add_argument(
        "--non_linear_dtype",
        type=str,
        default="torch.float32",
        choices=["torch.bfloat16", "torch.float16"],
        help="Data type for non-linear",
    )
    parser.add_argument("--lora_path", type=str, nargs="*", help="Path(s) to LoRA file(s). Can specify multiple paths separated by spaces.")
    parser.add_argument(
        "--lora_alpha",
        type=float,
        nargs="*",
        default=None,
        help="Alpha for LoRA weight scaling, Default non scaling. ",
    )
    parser.add_argument(
        "--lora_strength",
        type=float,
        nargs="*",
        help="Additional strength factor(s) for LoRA deltas; default 1.0",
    )
    parser.add_argument("--copy_no_weight_files", action="store_true")
    parser.add_argument("--single_file", action="store_true", help="Save as a single safetensors file instead of chunking (warning: requires loading entire model in memory)")
    parser.add_argument(
        "--lora_key_convert",
        choices=["auto", "same", "convert"],
        default="auto",
        help="How to handle LoRA key conversion: 'auto' (detect from LoRA), 'same' (use original keys), 'convert' (apply same conversion as model)",
    )
    parser.add_argument("--parallel", action="store_true", default=True, help="Use parallel processing for faster conversion (default: True)")
    parser.add_argument("--no-parallel", dest="parallel", action="store_false", help="Disable parallel processing")
    args = parser.parse_args()

    # Validate conflicting arguments
    if args.single_file and args.save_by_block:
        parser.error("--single_file and --save_by_block cannot be used together. Choose one saving strategy.")

    if args.single_file and args.chunk_size > 0 and args.chunk_size != 100:
        logger.warning("--chunk_size is ignored when using --single_file option.")

    if args.quantized:
        args.linear_dtype = dtype_mapping.get(args.linear_type, None)
        args.non_linear_dtype = eval(args.non_linear_dtype)

        model_type_keys_map = {
            "qwen_image_dit": {
                "key_idx": 2,
                "target_keys": ["attn", "img_mlp", "txt_mlp", "txt_mod", "img_mod"],
                "ignore_key": None,
                "comfyui_keys": [
                    "time_text_embed.timestep_embedder.linear_1.weight",
                    "time_text_embed.timestep_embedder.linear_2.weight",
                    "img_in.weight",
                    "txt_in.weight",
                    "norm_out.linear.weight",
                    "proj_out.weight",
                ],
            },
            "wan_dit": {
                "key_idx": 2,
                "target_keys": ["self_attn", "cross_attn", "ffn"],
                "ignore_key": ["ca", "audio"],
            },
            "wan_animate_dit": {"key_idx": 2, "target_keys": ["self_attn", "cross_attn", "ffn"], "adapter_keys": ["linear1_kv", "linear1_q", "linear2"], "ignore_key": None},
            "hunyuan_dit": {
                "key_idx": 2,
                "target_keys": [
                    "img_mod",
                    "img_attn_q",
                    "img_attn_k",
                    "img_attn_v",
                    "img_attn_proj",
                    "img_mlp",
                    "txt_mod",
                    "txt_attn_q",
                    "txt_attn_k",
                    "txt_attn_v",
                    "txt_attn_proj",
                    "txt_mlp",
                ],
                "ignore_key": None,
            },
            "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
            "wan_clip": {
                "key_idx": 3,
                "target_keys": ["attn", "mlp"],
                "ignore_key": ["textual"],
            },
            "qwen25vl_llm": {
                "key_idx": 3,
                "target_keys": ["self_attn", "mlp"],
                "ignore_key": ["visual"],
            },
        }

        args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
        args.adapter_keys = model_type_keys_map[args.model_type]["adapter_keys"] if "adapter_keys" in model_type_keys_map[args.model_type] else None
        args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
        args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]
        args.comfyui_keys = model_type_keys_map[args.model_type]["comfyui_keys"] if "comfyui_keys" in model_type_keys_map[args.model_type] else None

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()