gradio_demo.py 56.2 KB
Newer Older
xuwx1's avatar
xuwx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
import argparse
import gc
import glob
import importlib.util
import json
import os

os.environ["PROFILING_DEBUG_LEVEL"] = "2"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
os.environ["DTYPE"] = "BF16"
import random
from datetime import datetime

import gradio as gr
import psutil
import torch
from loguru import logger

from lightx2v.utils.input_info import set_input_info
from lightx2v.utils.set_config import get_default_config

try:
    from flashinfer.rope import apply_rope_with_cos_sin_cache_inplace
except ImportError:
    apply_rope_with_cos_sin_cache_inplace = None


logger.add(
    "inference_logs.log",
    rotation="100 MB",
    encoding="utf-8",
    enqueue=True,
    backtrace=True,
    diagnose=True,
)

MAX_NUMPY_SEED = 2**32 - 1


def scan_model_path_contents(model_path):
    """Scan model_path directory and return available files and subdirectories"""
    if not model_path or not os.path.exists(model_path):
        return {"dirs": [], "files": [], "safetensors_dirs": [], "pth_files": []}

    dirs = []
    files = []
    safetensors_dirs = []
    pth_files = []

    try:
        for item in os.listdir(model_path):
            item_path = os.path.join(model_path, item)
            if os.path.isdir(item_path):
                dirs.append(item)
                # Check if directory contains safetensors files
                if glob.glob(os.path.join(item_path, "*.safetensors")):
                    safetensors_dirs.append(item)
            elif os.path.isfile(item_path):
                files.append(item)
                if item.endswith(".pth"):
                    pth_files.append(item)
    except Exception as e:
        logger.warning(f"Failed to scan directory: {e}")

    return {
        "dirs": sorted(dirs),
        "files": sorted(files),
        "safetensors_dirs": sorted(safetensors_dirs),
        "pth_files": sorted(pth_files),
    }


def get_dit_choices(model_path, model_type="wan2.1"):
    """Get Diffusion model options (filtered by model type)"""
    contents = scan_model_path_contents(model_path)
    excluded_keywords = ["vae", "tae", "clip", "t5", "high_noise", "low_noise"]
    fp8_supported = is_fp8_supported_gpu()

    if model_type == "wan2.1":
        # wan2.1: filter files/dirs containing wan2.1 or Wan2.1
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.1" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)
    else:
        # wan2.2: filter files/dirs containing wan2.2 or Wan2.2
        def is_valid(name):
            name_lower = name.lower()
            if "wan2.2" not in name_lower:
                return False
            if not fp8_supported and "fp8" in name_lower:
                return False
            return not any(kw in name_lower for kw in excluded_keywords)

    # Filter matching directories and files
    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_high_noise_choices(model_path):
    """Get high noise model options (files/dirs containing high_noise)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "high_noise" in name_lower or "high-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_low_noise_choices(model_path):
    """Get low noise model options (files/dirs containing low_noise)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    def is_valid(name):
        name_lower = name.lower()
        if not fp8_supported and "fp8" in name_lower:
            return False
        return "low_noise" in name_lower or "low-noise" in name_lower

    dir_choices = [d for d in contents["dirs"] if is_valid(d)]
    file_choices = [f for f in contents["files"] if is_valid(f)]
    choices = dir_choices + file_choices
    return choices if choices else [""]


def get_t5_choices(model_path):
    """Get T5 model options (.pth or .safetensors files containing t5 keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "t5" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "t5" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_clip_choices(model_path):
    """Get CLIP model options (.pth or .safetensors files containing clip keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and "clip" in f.lower() and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if "clip" in d.lower() and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def get_vae_choices(model_path):
    """Get VAE model options (.pth or .safetensors files containing vae/VAE/tae keyword)"""
    contents = scan_model_path_contents(model_path)
    fp8_supported = is_fp8_supported_gpu()

    # Filter from .pth files
    pth_choices = [f for f in contents["pth_files"] if any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # Filter from .safetensors files
    safetensors_choices = [f for f in contents["files"] if f.endswith(".safetensors") and any(kw in f.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in f.lower())]

    # Filter from directories containing safetensors
    safetensors_dir_choices = [d for d in contents["safetensors_dirs"] if any(kw in d.lower() for kw in ["vae", "tae"]) and (fp8_supported or "fp8" not in d.lower())]

    choices = pth_choices + safetensors_choices + safetensors_dir_choices
    return choices if choices else [""]


def detect_quant_scheme(model_name):
    """Automatically detect quantization scheme from model name
    - If model name contains "int8" → "int8"
    - If model name contains "fp8" and device supports → "fp8"
    - Otherwise return None (no quantization)
    """
    if not model_name:
        return None
    name_lower = model_name.lower()
    if "int8" in name_lower:
        return "int8"
    elif "fp8" in name_lower:
        if is_fp8_supported_gpu():
            return "fp8"
        else:
            # Device doesn't support fp8, return None (use default precision)
            return None
    return None


def update_model_path_options(model_path, model_type="wan2.1"):
    """Update all model path selectors when model_path or model_type changes"""
    dit_choices = get_dit_choices(model_path, model_type)
    high_noise_choices = get_high_noise_choices(model_path)
    low_noise_choices = get_low_noise_choices(model_path)
    t5_choices = get_t5_choices(model_path)
    clip_choices = get_clip_choices(model_path)
    vae_choices = get_vae_choices(model_path)

    return (
        gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
        gr.update(choices=high_noise_choices, value=high_noise_choices[0] if high_noise_choices else ""),
        gr.update(choices=low_noise_choices, value=low_noise_choices[0] if low_noise_choices else ""),
        gr.update(choices=t5_choices, value=t5_choices[0] if t5_choices else ""),
        gr.update(choices=clip_choices, value=clip_choices[0] if clip_choices else ""),
        gr.update(choices=vae_choices, value=vae_choices[0] if vae_choices else ""),
    )


def generate_random_seed():
    return random.randint(0, MAX_NUMPY_SEED)


def is_module_installed(module_name):
    try:
        spec = importlib.util.find_spec(module_name)
        return spec is not None
    except ModuleNotFoundError:
        return False


def get_available_quant_ops():
    available_ops = []

    vllm_installed = is_module_installed("vllm")
    if vllm_installed:
        available_ops.append(("vllm", True))
    else:
        available_ops.append(("vllm", False))

    sgl_installed = is_module_installed("sgl_kernel")
    if sgl_installed:
        available_ops.append(("sgl", True))
    else:
        available_ops.append(("sgl", False))

    q8f_installed = is_module_installed("q8_kernels")
    if q8f_installed:
        available_ops.append(("q8f", True))
    else:
        available_ops.append(("q8f", False))

    return available_ops


def get_available_attn_ops():
    available_ops = []

    vllm_installed = is_module_installed("flash_attn")
    if vllm_installed:
        available_ops.append(("flash_attn2", True))
    else:
        available_ops.append(("flash_attn2", False))

    sgl_installed = is_module_installed("flash_attn_interface")
    if sgl_installed:
        available_ops.append(("flash_attn3", True))
    else:
        available_ops.append(("flash_attn3", False))

    sage_installed = is_module_installed("sageattention")
    if sage_installed:
        available_ops.append(("sage_attn2", True))
    else:
        available_ops.append(("sage_attn2", False))

    sage3_installed = is_module_installed("sageattn3")
    if sage3_installed:
        available_ops.append(("sage_attn3", True))
    else:
        available_ops.append(("sage_attn3", False))

    torch_installed = is_module_installed("torch")
    if torch_installed:
        available_ops.append(("torch_sdpa", True))
    else:
        available_ops.append(("torch_sdpa", False))

    return available_ops


def get_gpu_memory(gpu_idx=0):
    if not torch.cuda.is_available():
        return 0
    try:
        with torch.cuda.device(gpu_idx):
            memory_info = torch.cuda.mem_get_info()
            total_memory = memory_info[1] / (1024**3)  # Convert bytes to GB
            return total_memory
    except Exception as e:
        logger.warning(f"Failed to get GPU memory: {e}")
        return 0


def get_cpu_memory():
    available_bytes = psutil.virtual_memory().available
    return available_bytes / 1024**3


def cleanup_memory():
    gc.collect()

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    try:
        import psutil

        if hasattr(psutil, "virtual_memory"):
            if os.name == "posix":
                try:
                    os.system("sync")
                except:  # noqa
                    pass
    except:  # noqa
        pass


def generate_unique_filename(output_dir):
    os.makedirs(output_dir, exist_ok=True)
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    return os.path.join(output_dir, f"{timestamp}.mp4")


def is_fp8_supported_gpu():
    if not torch.cuda.is_available():
        return False
    compute_capability = torch.cuda.get_device_capability(0)
    major, minor = compute_capability
    return (major == 8 and minor == 9) or (major >= 9)


def is_ada_architecture_gpu():
    if not torch.cuda.is_available():
        return False
    try:
        gpu_name = torch.cuda.get_device_name(0).upper()
        ada_keywords = ["RTX 40", "RTX40", "4090", "4080", "4070", "4060"]
        return any(keyword in gpu_name for keyword in ada_keywords)
    except Exception as e:
        logger.warning(f"Failed to get GPU name: {e}")
        return False


def get_quantization_options(model_path):
    """Get quantization options dynamically based on model_path"""
    import os

    # Check subdirectories
    subdirs = ["original", "fp8", "int8"]
    has_subdirs = {subdir: os.path.exists(os.path.join(model_path, subdir)) for subdir in subdirs}

    # Check original files in root directory
    t5_bf16_exists = os.path.exists(os.path.join(model_path, "models_t5_umt5-xxl-enc-bf16.pth"))
    clip_fp16_exists = os.path.exists(os.path.join(model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"))

    # Generate options
    def get_choices(has_subdirs, original_type, fp8_type, int8_type, fallback_type, has_original_file=False):
        choices = []
        if has_subdirs["original"]:
            choices.append(original_type)
        if has_subdirs["fp8"]:
            choices.append(fp8_type)
        if has_subdirs["int8"]:
            choices.append(int8_type)

        # If no subdirectories but original file exists, add original type
        if has_original_file:
            if not choices or "original" not in choices:
                choices.append(original_type)

        # If no options at all, use default value
        if not choices:
            choices = [fallback_type]

        return choices, choices[0]

    # DIT options
    dit_choices, dit_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16")

    # T5 options - check if original file exists
    t5_choices, t5_default = get_choices(has_subdirs, "bf16", "fp8", "int8", "bf16", t5_bf16_exists)

    # CLIP options - check if original file exists
    clip_choices, clip_default = get_choices(has_subdirs, "fp16", "fp8", "int8", "fp16", clip_fp16_exists)

    return {"dit_choices": dit_choices, "dit_default": dit_default, "t5_choices": t5_choices, "t5_default": t5_default, "clip_choices": clip_choices, "clip_default": clip_default}


def determine_model_cls(model_type, dit_name, high_noise_name):
    """Determine model_cls based on model type and file name"""
    # Determine file name to check
    if model_type == "wan2.1":
        check_name = dit_name.lower() if dit_name else ""
        is_distill = "4step" in check_name
        return "wan2.1_distill" if is_distill else "wan2.1"
    else:
        # wan2.2
        check_name = high_noise_name.lower() if high_noise_name else ""
        is_distill = "4step" in check_name
        return "wan2.2_moe_distill" if is_distill else "wan2.2_moe"


global_runner = None
current_config = None
cur_dit_path = None
cur_t5_path = None
cur_clip_path = None

available_quant_ops = get_available_quant_ops()
quant_op_choices = []
for op_name, is_installed in available_quant_ops:
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    quant_op_choices.append((op_name, display_text))

available_attn_ops = get_available_attn_ops()
# Priority order
attn_priority = ["sage_attn3", "sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]
# Sort by priority, installed ones first, uninstalled ones last
attn_op_choices = []
attn_op_dict = dict(available_attn_ops)

# Add installed ones first (by priority)
for op_name in attn_priority:
    if op_name in attn_op_dict and attn_op_dict[op_name]:
        status_text = "✅ Installed"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# Add uninstalled ones (by priority)
for op_name in attn_priority:
    if op_name in attn_op_dict and not attn_op_dict[op_name]:
        status_text = "❌ Not Installed"
        display_text = f"{op_name} ({status_text})"
        attn_op_choices.append((op_name, display_text))

# Add other operators not in priority list (installed ones first)
other_ops = [(op_name, is_installed) for op_name, is_installed in available_attn_ops if op_name not in attn_priority]
for op_name, is_installed in sorted(other_ops, key=lambda x: not x[1]):  # Installed ones first
    status_text = "✅ Installed" if is_installed else "❌ Not Installed"
    display_text = f"{op_name} ({status_text})"
    attn_op_choices.append((op_name, display_text))


def run_inference(
    prompt,
    negative_prompt,
    save_result_path,
    infer_steps,
    num_frames,
    resolution,
    seed,
    sample_shift,
    enable_cfg,
    cfg_scale,
    fps,
    use_tiling_vae,
    lazy_load,
    cpu_offload,
    offload_granularity,
    t5_cpu_offload,
    clip_cpu_offload,
    vae_cpu_offload,
    unload_modules,
    attention_type,
    quant_op,
    rope_chunk,
    rope_chunk_size,
    clean_cuda_cache,
    model_path_input,
    model_type_input,
    task_type_input,
    dit_path_input,
    high_noise_path_input,
    low_noise_path_input,
    t5_path_input,
    clip_path_input,
    vae_path_input,
    image_path=None,
):
    cleanup_memory()

    quant_op = quant_op.split("(")[0].strip()
    attention_type = attention_type.split("(")[0].strip()

    global global_runner, current_config, model_path, model_cls
    global cur_dit_path, cur_t5_path, cur_clip_path

    task = task_type_input
    model_cls = determine_model_cls(model_type_input, dit_path_input, high_noise_path_input)
    logger.info(f"Auto-determined model_cls: {model_cls} (Model type: {model_type_input})")

    if model_type_input == "wan2.1":
        dit_quant_detected = detect_quant_scheme(dit_path_input)
    else:
        dit_quant_detected = detect_quant_scheme(high_noise_path_input)
    t5_quant_detected = detect_quant_scheme(t5_path_input)
    clip_quant_detected = detect_quant_scheme(clip_path_input)
    logger.info(f"Auto-detected quantization scheme - DIT: {dit_quant_detected}, T5: {t5_quant_detected}, CLIP: {clip_quant_detected}")

    if model_path_input and model_path_input.strip():
        model_path = model_path_input.strip()

    if os.path.exists(os.path.join(model_path, "config.json")):
        with open(os.path.join(model_path, "config.json"), "r") as f:
            model_config = json.load(f)
    else:
        model_config = {}

    save_result_path = generate_unique_filename(output_dir)

    is_dit_quant = dit_quant_detected != "bf16"
    is_t5_quant = t5_quant_detected != "bf16"
    is_clip_quant = clip_quant_detected != "fp16"

    dit_quantized_ckpt = None
    dit_original_ckpt = None
    high_noise_quantized_ckpt = None
    low_noise_quantized_ckpt = None
    high_noise_original_ckpt = None
    low_noise_original_ckpt = None

    if is_dit_quant:
        dit_quant_scheme = f"{dit_quant_detected}-{quant_op}"
        if "wan2.1" in model_cls:
            dit_quantized_ckpt = os.path.join(model_path, dit_path_input)
        else:
            high_noise_quantized_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_quantized_ckpt = os.path.join(model_path, low_noise_path_input)
    else:
        dit_quantized_ckpt = "Default"
        if "wan2.1" in model_cls:
            dit_original_ckpt = os.path.join(model_path, dit_path_input)
        else:
            high_noise_original_ckpt = os.path.join(model_path, high_noise_path_input)
            low_noise_original_ckpt = os.path.join(model_path, low_noise_path_input)

    # Use frontend-selected T5 path
    if is_t5_quant:
        t5_quantized_ckpt = os.path.join(model_path, t5_path_input)
        t5_quant_scheme = f"{t5_quant_detected}-{quant_op}"
        t5_original_ckpt = None
    else:
        t5_quantized_ckpt = None
        t5_quant_scheme = None
        t5_original_ckpt = os.path.join(model_path, t5_path_input)

    # Use frontend-selected CLIP path
    if is_clip_quant:
        clip_quantized_ckpt = os.path.join(model_path, clip_path_input)
        clip_quant_scheme = f"{clip_quant_detected}-{quant_op}"
        clip_original_ckpt = None
    else:
        clip_quantized_ckpt = None
        clip_quant_scheme = None
        clip_original_ckpt = os.path.join(model_path, clip_path_input)

    if model_type_input == "wan2.1":
        current_dit_path = dit_path_input
    else:
        current_dit_path = f"{high_noise_path_input}|{low_noise_path_input}" if high_noise_path_input and low_noise_path_input else None

    current_t5_path = t5_path_input
    current_clip_path = clip_path_input

    needs_reinit = (
        lazy_load
        or unload_modules
        or global_runner is None
        or current_config is None
        or cur_dit_path is None
        or cur_dit_path != current_dit_path
        or cur_t5_path is None
        or cur_t5_path != current_t5_path
        or cur_clip_path is None
        or cur_clip_path != current_clip_path
    )

    if cfg_scale == 1:
        enable_cfg = False
    else:
        enable_cfg = True

    vae_name_lower = vae_path_input.lower() if vae_path_input else ""
    use_tae = "tae" in vae_name_lower or "lighttae" in vae_name_lower
    use_lightvae = "lightvae" in vae_name_lower
    need_scaled = "lighttae" in vae_name_lower

    logger.info(f"VAE configuration - use_tae: {use_tae}, use_lightvae: {use_lightvae}, need_scaled: {need_scaled} (VAE: {vae_path_input})")

    config_graio = {
        "infer_steps": infer_steps,
        "target_video_length": num_frames,
        "target_width": int(resolution.split("x")[0]),
        "target_height": int(resolution.split("x")[1]),
        "self_attn_1_type": attention_type,
        "cross_attn_1_type": attention_type,
        "cross_attn_2_type": attention_type,
        "enable_cfg": enable_cfg,
        "sample_guide_scale": cfg_scale,
        "sample_shift": sample_shift,
        "fps": fps,
        "feature_caching": "NoCaching",
        "do_mm_calib": False,
        "parallel_attn_type": None,
        "parallel_vae": False,
        "max_area": False,
        "vae_stride": (4, 8, 8),
        "patch_size": (1, 2, 2),
        "lora_path": None,
        "strength_model": 1.0,
        "use_prompt_enhancer": False,
        "text_len": 512,
        "denoising_step_list": [1000, 750, 500, 250],
        "cpu_offload": True if "wan2.2" in model_cls else cpu_offload,
        "offload_granularity": "phase" if "wan2.2" in model_cls else offload_granularity,
        "t5_cpu_offload": t5_cpu_offload,
        "clip_cpu_offload": clip_cpu_offload,
        "vae_cpu_offload": vae_cpu_offload,
        "dit_quantized": is_dit_quant,
        "dit_quant_scheme": dit_quant_scheme,
        "dit_quantized_ckpt": dit_quantized_ckpt,
        "dit_original_ckpt": dit_original_ckpt,
        "high_noise_quantized_ckpt": high_noise_quantized_ckpt,
        "low_noise_quantized_ckpt": low_noise_quantized_ckpt,
        "high_noise_original_ckpt": high_noise_original_ckpt,
        "low_noise_original_ckpt": low_noise_original_ckpt,
        "t5_original_ckpt": t5_original_ckpt,
        "t5_quantized": is_t5_quant,
        "t5_quantized_ckpt": t5_quantized_ckpt,
        "t5_quant_scheme": t5_quant_scheme,
        "clip_original_ckpt": clip_original_ckpt,
        "clip_quantized": is_clip_quant,
        "clip_quantized_ckpt": clip_quantized_ckpt,
        "clip_quant_scheme": clip_quant_scheme,
        "vae_path": os.path.join(model_path, vae_path_input),
        "use_tiling_vae": use_tiling_vae,
        "use_tae": use_tae,
        "use_lightvae": use_lightvae,
        "need_scaled": need_scaled,
        "lazy_load": lazy_load,
        "rope_chunk": rope_chunk,
        "rope_chunk_size": rope_chunk_size,
        "clean_cuda_cache": clean_cuda_cache,
        "unload_modules": unload_modules,
        "seq_parallel": False,
        "warm_up_cpu_buffers": False,
        "boundary_step_index": 2,
        "boundary": 0.900,
        "use_image_encoder": False if "wan2.2" in model_cls else True,
        "rope_type": "flashinfer" if apply_rope_with_cos_sin_cache_inplace else "torch",
    }

    args = argparse.Namespace(
        model_cls=model_cls,
        seed=seed,
        task=task,
        model_path=model_path,
        prompt_enhancer=None,
        prompt=prompt,
        negative_prompt=negative_prompt,
        image_path=image_path,
        save_result_path=save_result_path,
        return_result_tensor=False,
    )

    config = get_default_config()
    config.update({k: v for k, v in vars(args).items()})
    config.update(model_config)
    config.update(config_graio)

    logger.info(f"Using model: {model_path}")
    logger.info(f"Inference configuration:\n{json.dumps(config, indent=4, ensure_ascii=False)}")

    # Initialize or reuse the runner
    runner = global_runner
    if needs_reinit:
        if runner is not None:
            del runner
            torch.cuda.empty_cache()
            gc.collect()

        from lightx2v.infer import init_runner  # noqa

        runner = init_runner(config)
        input_info = set_input_info(args)

        current_config = config
        cur_dit_path = current_dit_path
        cur_t5_path = current_t5_path
        cur_clip_path = current_clip_path

        if not lazy_load:
            global_runner = runner
    else:
        runner.config = config

    runner.run_pipeline(input_info)
    cleanup_memory()

    return save_result_path


def handle_lazy_load_change(lazy_load_enabled):
    """Handle lazy_load checkbox change to automatically enable unload_modules"""
    return gr.update(value=lazy_load_enabled)


def auto_configure(resolution):
    """Auto-configure inference options based on machine configuration and resolution"""
    default_config = {
        "lazy_load_val": False,
        "rope_chunk_val": False,
        "rope_chunk_size_val": 100,
        "clean_cuda_cache_val": False,
        "cpu_offload_val": False,
        "offload_granularity_val": "block",
        "t5_cpu_offload_val": False,
        "clip_cpu_offload_val": False,
        "vae_cpu_offload_val": False,
        "unload_modules_val": False,
        "attention_type_val": attn_op_choices[0][1],
        "quant_op_val": quant_op_choices[0][1],
        "use_tiling_vae_val": False,
    }

    gpu_memory = round(get_gpu_memory())
    cpu_memory = round(get_cpu_memory())

    attn_priority = ["sage_attn3", "sage_attn2", "flash_attn3", "flash_attn2", "torch_sdpa"]

    if is_ada_architecture_gpu():
        quant_op_priority = ["q8f", "vllm", "sgl"]
    else:
        quant_op_priority = ["vllm", "sgl", "q8f"]

    for op in attn_priority:
        if dict(available_attn_ops).get(op):
            default_config["attention_type_val"] = dict(attn_op_choices)[op]
            break

    for op in quant_op_priority:
        if dict(available_quant_ops).get(op):
            default_config["quant_op_val"] = dict(quant_op_choices)[op]
            break

    if resolution in [
        "1280x720",
        "720x1280",
        "1280x544",
        "544x1280",
        "1104x832",
        "832x1104",
        "960x960",
    ]:
        res = "720p"
    elif resolution in [
        "960x544",
        "544x960",
    ]:
        res = "540p"
    else:
        res = "480p"

    if res == "720p":
        gpu_rules = [
            (80, {}),
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                    "rope_chunk_val": True,
                    "rope_chunk_size_val": 100,
                    "clean_cuda_cache_val": True,
                },
            ),
        ]

    else:
        gpu_rules = [
            (80, {}),
            (40, {"cpu_offload_val": False, "t5_cpu_offload_val": True, "vae_cpu_offload_val": True, "clip_cpu_offload_val": True}),
            (32, {"cpu_offload_val": True, "t5_cpu_offload_val": False, "vae_cpu_offload_val": False, "clip_cpu_offload_val": False}),
            (
                24,
                {
                    "cpu_offload_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                },
            ),
            (
                16,
                {
                    "cpu_offload_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                },
            ),
            (
                8,
                {
                    "cpu_offload_val": True,
                    "t5_cpu_offload_val": True,
                    "vae_cpu_offload_val": True,
                    "clip_cpu_offload_val": True,
                    "use_tiling_vae_val": True,
                    "offload_granularity_val": "phase",
                },
            ),
        ]

    cpu_rules = [
        (128, {}),
        (64, {}),
        (32, {"unload_modules_val": True}),
        (
            16,
            {
                "lazy_load_val": True,
                "unload_modules_val": True,
            },
        ),
    ]

    for threshold, updates in gpu_rules:
        if gpu_memory >= threshold:
            default_config.update(updates)
            break

    for threshold, updates in cpu_rules:
        if cpu_memory >= threshold:
            default_config.update(updates)
            break

    return (
        gr.update(value=default_config["lazy_load_val"]),
        gr.update(value=default_config["rope_chunk_val"]),
        gr.update(value=default_config["rope_chunk_size_val"]),
        gr.update(value=default_config["clean_cuda_cache_val"]),
        gr.update(value=default_config["cpu_offload_val"]),
        gr.update(value=default_config["offload_granularity_val"]),
        gr.update(value=default_config["t5_cpu_offload_val"]),
        gr.update(value=default_config["clip_cpu_offload_val"]),
        gr.update(value=default_config["vae_cpu_offload_val"]),
        gr.update(value=default_config["unload_modules_val"]),
        gr.update(value=default_config["attention_type_val"]),
        gr.update(value=default_config["quant_op_val"]),
        gr.update(value=default_config["use_tiling_vae_val"]),
    )


css = """
        .main-content { max-width: 1600px; margin: auto; padding: 20px; }
        .warning { color: #ff6b6b; font-weight: bold; }

        /* Model configuration area styles */
        .model-config {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
        }

        /* Input parameters area styles */
        .input-params {
            margin-bottom: 20px !important;
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 15px;
            background: linear-gradient(135deg, #fff5f5 0%, #ffeef0 100%);
        }

        /* Output video area styles */
        .output-video {
            border: 1px solid #e0e0e0;
            border-radius: 12px;
            padding: 20px;
            background: linear-gradient(135deg, #e0f2fe 0%, #bae6fd 100%);
            min-height: 400px;
        }

        /* Generate button styles */
        .generate-btn {
            width: 100%;
            margin-top: 20px;
            padding: 15px 30px !important;
            font-size: 18px !important;
            font-weight: bold !important;
            background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
            border: none !important;
            border-radius: 10px !important;
            box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
            transition: all 0.3s ease !important;
        }
        .generate-btn:hover {
            transform: translateY(-2px);
            box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
        }

        /* Accordion header styles */
        .model-config .gr-accordion-header,
        .input-params .gr-accordion-header,
        .output-video .gr-accordion-header {
            font-size: 20px !important;
            font-weight: bold !important;
            padding: 15px !important;
        }

        /* Optimize spacing */
        .gr-row {
            margin-bottom: 15px;
        }

        /* Video player styles */
        .output-video video {
            border-radius: 10px;
            box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
        }
    """


def main():
    with gr.Blocks(title="Lightx2v (Lightweight Video Inference and Generation Engine)") as demo:
        gr.Markdown(f"# 🎬 LightX2V Video Generator")
        gr.HTML(f"<style>{css}</style>")
        # Main layout: left and right columns
        with gr.Row():
            # Left: configuration and input area
            with gr.Column(scale=5):
                # Model configuration area
                with gr.Accordion("🗂️ Model Configuration", open=True, elem_classes=["model-config"]):
                    # FP8 support notice
                    if not is_fp8_supported_gpu():
                        gr.Markdown("⚠️ **Your device does not support FP8 inference**. Models containing FP8 have been automatically hidden.")

                    # Hidden state components
                    model_path_input = gr.Textbox(value=model_path, visible=False)

                    # Model type + Task type
                    with gr.Row():
                        model_type_input = gr.Radio(
                            label="Model Type",
                            choices=["wan2.1", "wan2.2"],
                            value="wan2.1",
                            info="wan2.2 requires separate high noise and low noise models",
                        )
                        task_type_input = gr.Radio(
                            label="Task Type",
                            choices=["i2v", "t2v"],
                            value="i2v",
                            info="i2v: Image-to-video, t2v: Text-to-video",
                        )

                    # wan2.1: Diffusion model (single row)
                    with gr.Row() as wan21_row:
                        dit_path_input = gr.Dropdown(
                            label="🎨 Diffusion Model",
                            choices=get_dit_choices(model_path, "wan2.1"),
                            value=get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else "",
                            allow_custom_value=True,
                            visible=True,
                        )

                    # wan2.2 specific: high noise model + low noise model (hidden by default)
                    with gr.Row(visible=False) as wan22_row:
                        high_noise_path_input = gr.Dropdown(
                            label="🔊 High Noise Model",
                            choices=get_high_noise_choices(model_path),
                            value=get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else "",
                            allow_custom_value=True,
                        )
                        low_noise_path_input = gr.Dropdown(
                            label="🔇 Low Noise Model",
                            choices=get_low_noise_choices(model_path),
                            value=get_low_noise_choices(model_path)[0] if get_low_noise_choices(model_path) else "",
                            allow_custom_value=True,
                        )

                    # Text encoder (single row)
                    with gr.Row():
                        t5_path_input = gr.Dropdown(
                            label="📝 Text Encoder",
                            choices=get_t5_choices(model_path),
                            value=get_t5_choices(model_path)[0] if get_t5_choices(model_path) else "",
                            allow_custom_value=True,
                        )

                    # Image encoder + VAE decoder
                    with gr.Row():
                        clip_path_input = gr.Dropdown(
                            label="🖼️ Image Encoder",
                            choices=get_clip_choices(model_path),
                            value=get_clip_choices(model_path)[0] if get_clip_choices(model_path) else "",
                            allow_custom_value=True,
                        )
                        vae_path_input = gr.Dropdown(
                            label="🎞️ VAE Decoder",
                            choices=get_vae_choices(model_path),
                            value=get_vae_choices(model_path)[0] if get_vae_choices(model_path) else "",
                            allow_custom_value=True,
                        )

                    # Attention operator and quantization matrix multiplication operator
                    with gr.Row():
                        attention_type = gr.Dropdown(
                            label="⚡ Attention Operator",
                            choices=[op[1] for op in attn_op_choices],
                            value=attn_op_choices[0][1] if attn_op_choices else "",
                            info="Use appropriate attention operators to accelerate inference",
                        )
                        quant_op = gr.Dropdown(
                            label="Quantization Matmul Operator",
                            choices=[op[1] for op in quant_op_choices],
                            value=quant_op_choices[0][1],
                            info="Select quantization matrix multiplication operator to accelerate inference",
                            interactive=True,
                        )

                    # Determine if model is distill version
                    def is_distill_model(model_type, dit_path, high_noise_path):
                        """Determine if model is distill version based on model type and path"""
                        if model_type == "wan2.1":
                            check_name = dit_path.lower() if dit_path else ""
                        else:
                            check_name = high_noise_path.lower() if high_noise_path else ""
                        return "4step" in check_name

                    # Model type change event
                    def on_model_type_change(model_type, model_path_val):
                        if model_type == "wan2.2":
                            return gr.update(visible=False), gr.update(visible=True), gr.update()
                        else:
                            # Update wan2.1 Diffusion model options
                            dit_choices = get_dit_choices(model_path_val, "wan2.1")
                            return (
                                gr.update(visible=True),
                                gr.update(visible=False),
                                gr.update(choices=dit_choices, value=dit_choices[0] if dit_choices else ""),
                            )

                    model_type_input.change(
                        fn=on_model_type_change,
                        inputs=[model_type_input, model_path_input],
                        outputs=[wan21_row, wan22_row, dit_path_input],
                    )

                # Input parameters area
                with gr.Accordion("📥 Input Parameters", open=True, elem_classes=["input-params"]):
                    # Image input (shown for i2v)
                    with gr.Row(visible=True) as image_input_row:
                        image_path = gr.Image(
                            label="Input Image",
                            type="filepath",
                            height=300,
                            interactive=True,
                        )

                    # Task type change event
                    def on_task_type_change(task_type):
                        return gr.update(visible=(task_type == "i2v"))

                    task_type_input.change(
                        fn=on_task_type_change,
                        inputs=[task_type_input],
                        outputs=[image_input_row],
                    )

                    with gr.Row():
                        with gr.Column():
                            prompt = gr.Textbox(
                                label="Prompt",
                                lines=3,
                                placeholder="Describe the video content...",
                                max_lines=5,
                            )
                        with gr.Column():
                            negative_prompt = gr.Textbox(
                                label="Negative Prompt",
                                lines=3,
                                placeholder="What you don't want to appear in the video...",
                                max_lines=5,
                                value="Camera shake, bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards",
                            )
                        with gr.Column():
                            resolution = gr.Dropdown(
                                choices=[
                                    # 720p
                                    ("1280x720 (16:9, 720p)", "1280x720"),
                                    ("720x1280 (9:16, 720p)", "720x1280"),
                                    ("1280x544 (21:9, 720p)", "1280x544"),
                                    ("544x1280 (9:21, 720p)", "544x1280"),
                                    ("1104x832 (4:3, 720p)", "1104x832"),
                                    ("832x1104 (3:4, 720p)", "832x1104"),
                                    ("960x960 (1:1, 720p)", "960x960"),
                                    # 480p
                                    ("960x544 (16:9, 540p)", "960x544"),
                                    ("544x960 (9:16, 540p)", "544x960"),
                                    ("832x480 (16:9, 480p)", "832x480"),
                                    ("480x832 (9:16, 480p)", "480x832"),
                                    ("832x624 (4:3, 480p)", "832x624"),
                                    ("624x832 (3:4, 480p)", "624x832"),
                                    ("720x720 (1:1, 480p)", "720x720"),
                                    ("512x512 (1:1, 480p)", "512x512"),
                                ],
                                value="832x480",
                                label="Maximum Resolution",
                            )

                        with gr.Column(scale=9):
                            seed = gr.Slider(
                                label="Random Seed",
                                minimum=0,
                                maximum=MAX_NUMPY_SEED,
                                step=1,
                                value=generate_random_seed(),
                            )
                        with gr.Column():
                            default_dit = get_dit_choices(model_path, "wan2.1")[0] if get_dit_choices(model_path, "wan2.1") else ""
                            default_high_noise = get_high_noise_choices(model_path)[0] if get_high_noise_choices(model_path) else ""
                            default_is_distill = is_distill_model("wan2.1", default_dit, default_high_noise)

                            if default_is_distill:
                                infer_steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=4,
                                    info="Distill model inference steps default to 4.",
                                )
                            else:
                                infer_steps = gr.Slider(
                                    label="Inference Steps",
                                    minimum=1,
                                    maximum=100,
                                    step=1,
                                    value=40,
                                    info="Number of inference steps for video generation. Increasing steps may improve quality but reduce speed.",
                                )

                            # Dynamically update inference steps when model path changes
                            def update_infer_steps(model_type, dit_path, high_noise_path):
                                is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                                if is_distill:
                                    return gr.update(minimum=1, maximum=100, value=4, interactive=True)
                                else:
                                    return gr.update(minimum=1, maximum=100, value=40, interactive=True)

                            # Listen to model path changes
                            dit_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            high_noise_path_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )
                            model_type_input.change(
                                fn=lambda mt, dp, hnp: update_infer_steps(mt, dp, hnp),
                                inputs=[model_type_input, dit_path_input, high_noise_path_input],
                                outputs=[infer_steps],
                            )

                    # Set default CFG based on model class
                    # CFG scale factor: default to 1 for distill, otherwise 5
                    default_cfg_scale = 1 if default_is_distill else 5
                    # enable_cfg is not exposed to frontend, automatically set based on cfg_scale
                    # If cfg_scale == 1, then enable_cfg = False, otherwise enable_cfg = True
                    default_enable_cfg = False if default_cfg_scale == 1 else True
                    enable_cfg = gr.Checkbox(
                        label="Enable Classifier-Free Guidance",
                        value=default_enable_cfg,
                        visible=False,  # Hidden, not exposed to frontend
                    )

                    with gr.Row():
                        sample_shift = gr.Slider(
                            label="Distribution Shift",
                            value=5,
                            minimum=0,
                            maximum=10,
                            step=1,
                            info="Controls the degree of distribution shift for samples. Larger values indicate more significant shifts.",
                        )
                        cfg_scale = gr.Slider(
                            label="CFG Scale Factor",
                            minimum=1,
                            maximum=10,
                            step=1,
                            value=default_cfg_scale,
                            info="Controls the influence strength of the prompt. Higher values give more influence to the prompt. When value is 1, CFG is automatically disabled.",
                        )

                    # Update enable_cfg based on cfg_scale
                    def update_enable_cfg(cfg_scale_val):
                        """Automatically set enable_cfg based on cfg_scale value"""
                        if cfg_scale_val == 1:
                            return gr.update(value=False)
                        else:
                            return gr.update(value=True)

                    # Dynamically update CFG scale factor and enable_cfg when model path changes
                    def update_cfg_scale(model_type, dit_path, high_noise_path):
                        is_distill = is_distill_model(model_type, dit_path, high_noise_path)
                        if is_distill:
                            new_cfg_scale = 1
                        else:
                            new_cfg_scale = 5
                        new_enable_cfg = False if new_cfg_scale == 1 else True
                        return gr.update(value=new_cfg_scale), gr.update(value=new_enable_cfg)

                    dit_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    high_noise_path_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )
                    model_type_input.change(
                        fn=lambda mt, dp, hnp: update_cfg_scale(mt, dp, hnp),
                        inputs=[model_type_input, dit_path_input, high_noise_path_input],
                        outputs=[cfg_scale, enable_cfg],
                    )

                    cfg_scale.change(
                        fn=update_enable_cfg,
                        inputs=[cfg_scale],
                        outputs=[enable_cfg],
                    )

                    with gr.Row():
                        fps = gr.Slider(
                            label="Frames Per Second (FPS)",
                            minimum=8,
                            maximum=30,
                            step=1,
                            value=16,
                            info="Frames per second of the video. Higher FPS results in smoother videos.",
                        )
                        num_frames = gr.Slider(
                            label="Total Frames",
                            minimum=16,
                            maximum=120,
                            step=1,
                            value=81,
                            info="Total number of frames in the video. More frames result in longer videos.",
                        )

                    save_result_path = gr.Textbox(
                        label="Output Video Path",
                        value=generate_unique_filename(output_dir),
                        info="Must include .mp4 extension. If left blank or using the default value, a unique filename will be automatically generated.",
                        visible=False,  # Hide output path, auto-generated
                    )

            with gr.Column(scale=4):
                with gr.Accordion("📤 Generated Video", open=True, elem_classes=["output-video"]):
                    output_video = gr.Video(
                        label="",
                        height=600,
                        autoplay=True,
                        show_label=False,
                    )

                    infer_btn = gr.Button("🎬 Generate Video", variant="primary", size="lg", elem_classes=["generate-btn"])

            rope_chunk = gr.Checkbox(label="Chunked Rotary Position Embedding", value=False, visible=False)
            rope_chunk_size = gr.Slider(label="Rotary Embedding Chunk Size", value=100, minimum=100, maximum=10000, step=100, visible=False)
            unload_modules = gr.Checkbox(label="Unload Modules", value=False, visible=False)
            clean_cuda_cache = gr.Checkbox(label="Clean CUDA Memory Cache", value=False, visible=False)
            cpu_offload = gr.Checkbox(label="CPU Offloading", value=False, visible=False)
            lazy_load = gr.Checkbox(label="Enable Lazy Loading", value=False, visible=False)
            offload_granularity = gr.Dropdown(label="Dit Offload Granularity", choices=["block", "phase"], value="phase", visible=False)
            t5_cpu_offload = gr.Checkbox(label="T5 CPU Offloading", value=False, visible=False)
            clip_cpu_offload = gr.Checkbox(label="CLIP CPU Offloading", value=False, visible=False)
            vae_cpu_offload = gr.Checkbox(label="VAE CPU Offloading", value=False, visible=False)
            use_tiling_vae = gr.Checkbox(label="VAE Tiling Inference", value=False, visible=False)

        resolution.change(
            fn=auto_configure,
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        demo.load(
            fn=lambda res: auto_configure(res),
            inputs=[resolution],
            outputs=[
                lazy_load,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                use_tiling_vae,
            ],
        )

        infer_btn.click(
            fn=run_inference,
            inputs=[
                prompt,
                negative_prompt,
                save_result_path,
                infer_steps,
                num_frames,
                resolution,
                seed,
                sample_shift,
                enable_cfg,
                cfg_scale,
                fps,
                use_tiling_vae,
                lazy_load,
                cpu_offload,
                offload_granularity,
                t5_cpu_offload,
                clip_cpu_offload,
                vae_cpu_offload,
                unload_modules,
                attention_type,
                quant_op,
                rope_chunk,
                rope_chunk_size,
                clean_cuda_cache,
                model_path_input,
                model_type_input,
                task_type_input,
                dit_path_input,
                high_noise_path_input,
                low_noise_path_input,
                t5_path_input,
                clip_path_input,
                vae_path_input,
                image_path,
            ],
            outputs=output_video,
        )

    demo.launch(share=True, server_port=args.server_port, server_name=args.server_name, inbrowser=True, allowed_paths=[output_dir])


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Lightweight Video Generation")
    parser.add_argument("--model_path", type=str, required=True, help="Model folder path")
    parser.add_argument("--server_port", type=int, default=7862, help="Server port")
    parser.add_argument("--server_name", type=str, default="0.0.0.0", help="Server IP")
    parser.add_argument("--output_dir", type=str, default="./outputs", help="Output video save directory")
    args = parser.parse_args()

    global model_path, model_cls, output_dir
    model_path = args.model_path
    model_cls = "wan2.1"
    output_dir = args.output_dir

    main()