main.py 6.37 KB
Newer Older
zachteed's avatar
zachteed committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import sys
sys.path.append('../core')

import argparse
import torch
import cv2
import numpy as np
from collections import OrderedDict

import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from data_readers.tartan import TartanAir, TartanAirTest

from lietorch import SO3, SE3, Sim3
from geom.losses import *

# network
from networks.sim3_net import Sim3Net
from logger import Logger


def show_image(image):
    image = image.permute(1, 2, 0).cpu().numpy()
    cv2.imshow('image', image / 255.0)
    cv2.waitKey()

def normalize_images(images):
    images = images[:, :, [2,1,0]]
    mean = torch.as_tensor([0.485, 0.456, 0.406], device=images.device)
    std = torch.as_tensor([0.229, 0.224, 0.225], device=images.device)
    return (images/255.0).sub_(mean[:, None, None]).div_(std[:, None, None])

@torch.no_grad()
def evaluate(model):
    """ evaluate trained model """

    model.cuda()
    model.eval()

    R_THRESHOLD = 0.1
    T_THRESHOLD = 0.01
    S_THRESHOLD = 0.01

    model.eval()
    db = TartanAirTest()
    test_loader = DataLoader(db, batch_size=1, shuffle=False, num_workers=4)

    # random scales, make sure they are the same every time
    from numpy.random import default_rng
    rng = default_rng(1234)
    scales = 2 ** rng.uniform(-1.0, 1.0, 2000)
    scales = scales.astype(np.float32)

    metrics = {'t': [], 'r': [], 's': []}
    for i_batch, item in enumerate(test_loader):
        images, poses, depths, intrinsics = [x.to('cuda') for x in item]

        # convert poses w2c -> c2w
        Ps = SE3(poses).inv()
        batch, num = images.shape[:2]

        if args.transformation == 'SE3':
            Gs = SE3.Identity(Ps.shape, device='cuda')

        elif args.transformation == 'Sim3':
            Ps = Sim3(Ps)
            Gs = Sim3.Identity(Ps.shape, device='cuda')

            s = torch.as_tensor(scales[i_batch]).cuda().unsqueeze(0)
            phi = torch.zeros(batch, num, 7, device='cuda')
            phi[:,0,6] = s.log()

            Ps = Sim3.exp(phi) * Ps
            depths[:,0] *= s[:,None,None]

        images = normalize_images(images)
        Gs, _ = model(Gs, images, depths, intrinsics, num_steps=16)

        Gs = Gs[-1]
        dP = Ps[:,1] * Ps[:,0].inv()
        dG = Gs[:,1] * Gs[:,0].inv()

        dE = Sim3(dP.inv() * dG)
        r_err, t_err, s_err = pose_metrics(dE)

        t_err = t_err * TartanAir.DEPTH_SCALE

        metrics['t'].append(t_err.item())
        metrics['r'].append(r_err.item())
        metrics['s'].append(s_err.item())

    rlist = np.array(metrics['r'])
    tlist = np.array(metrics['t'])
    slist = np.array(metrics['s'])
    
    r_all = np.count_nonzero(rlist < R_THRESHOLD) / len(metrics['r'])
    t_all = np.count_nonzero(tlist < T_THRESHOLD) / len(metrics['t'])
    s_all = np.count_nonzero(slist < S_THRESHOLD) / len(metrics['s'])

    print("Rotation Acc: ", r_all)
    print("Translation Acc: ", t_all)
    print("Scale Acc: ", s_all)


def train(args):
    """ Test to make sure project transform correctly maps points """

    model = Sim3Net(args)
    model.cuda()
    model.train()

    if args.ckpt is not None:
        model.load_state_dict(torch.load(args.ckpt))

    db = TartanAir(mode='training', n_frames=2, do_aug=True, fmin=8.0, fmax=100.0)
    train_loader = DataLoader(db, batch_size=args.batch, shuffle=True, num_workers=4)

    optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
    scheduler = optim.lr_scheduler.OneCycleLR(optimizer, 
        args.lr, 100000, pct_start=0.01, cycle_momentum=False)

    from collections import OrderedDict
    graph = OrderedDict()
    graph[0] = [1]
    graph[1] = [0]

    logger = Logger(args.name, scheduler)
    should_keep_training = True
    total_steps = 0

    while should_keep_training:
        for i_batch, item in enumerate(train_loader):
            optimizer.zero_grad()
            images, poses, depths, intrinsics = [x.to('cuda') for x in item]
            
            # convert poses w2c -> c2w
            Ps = SE3(poses).inv()
            batch, num = images.shape[:2]

            if args.transformation == 'SE3':
                Gs = SE3.Identity(Ps.shape, device='cuda')

            elif args.transformation == 'Sim3':
                Ps = Sim3(Ps)
                Gs = Sim3.Identity(Ps.shape, device='cuda')

                s = 2**(2*torch.rand(batch) - 1.0).cuda()
                phi = torch.zeros(batch, num, 7, device='cuda')
                phi[:,0,6] = s.log()

                Ps = Sim3.exp(phi) * Ps
                depths[:,0] *= s[:,None,None]

            images = normalize_images(images)
            Gs, residuals = model(Gs, images, depths, intrinsics, num_steps=args.iters)

            geo_loss, geo_metrics = geodesic_loss(Ps, Gs, graph)
            res_loss, res_metrics = residual_loss(residuals)

            metrics = {}
            metrics.update(geo_metrics)
            metrics.update(res_metrics)

            loss = args.w1 * geo_loss + args.w2 * res_loss
            loss.backward()
            
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
            optimizer.step()
            scheduler.step()
            
            logger.push(metrics)
            total_steps += 1

            if total_steps % 5000 == 0:
                PATH = 'checkpoints/%s_%06d.pth' % (args.name, total_steps)
                torch.save(model.state_dict(), PATH)

                model.train()

    return model
                

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--name', default='bla', help='name your experiment')
    parser.add_argument('--transformation', default='SE3', help='checkpoint to restore')
    parser.add_argument('--ckpt', help='checkpoint to restore')
    parser.add_argument('--train', action='store_true')

    parser.add_argument('--batch', type=int, default=4)
    parser.add_argument('--iters', type=int, default=8)
    parser.add_argument('--lr', type=float, default=0.00025)
    parser.add_argument('--clip', type=float, default=2.5)

    parser.add_argument('--w1', type=float, default=10.0)
    parser.add_argument('--w2', type=float, default=0.1)


    args = parser.parse_args()

    if args.train:
        import os
        if not os.path.isdir('checkpoints'):
            os.mkdir('checkpoints')

        model = train(args)
    
    else:
        model = Sim3Net(args)
        model.load_state_dict(torch.load(args.ckpt))

    evaluate(model)