level1_real_impl.h 4.33 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "common.h"

// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
extern "C" RealScalar EIGEN_BLAS_FUNC_NAME(asum)(int *n, Scalar *px, int *incx) {
  //   std::cerr << "_asum " << *n << " " << *incx << "\n";

  Scalar *x = reinterpret_cast<Scalar *>(px);

  if (*n <= 0) return 0;

  if (*incx == 1)
    return make_vector(x, *n).cwiseAbs().sum();
  else
    return make_vector(x, *n, std::abs(*incx)).cwiseAbs().sum();
}

extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amax))(int *n, Scalar *px, int *incx) {
  if (*n <= 0) return 0;
  Scalar *x = reinterpret_cast<Scalar *>(px);

  Eigen::DenseIndex ret;
  if (*incx == 1)
    make_vector(x, *n).cwiseAbs().maxCoeff(&ret);
  else
    make_vector(x, *n, std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
  return int(ret) + 1;
}

extern "C" int EIGEN_CAT(i, EIGEN_BLAS_FUNC_NAME(amin))(int *n, Scalar *px, int *incx) {
  if (*n <= 0) return 0;
  Scalar *x = reinterpret_cast<Scalar *>(px);

  Eigen::DenseIndex ret;
  if (*incx == 1)
    make_vector(x, *n).cwiseAbs().minCoeff(&ret);
  else
    make_vector(x, *n, std::abs(*incx)).cwiseAbs().minCoeff(&ret);
  return int(ret) + 1;
}

// computes a vector-vector dot product.
extern "C" Scalar EIGEN_BLAS_FUNC_NAME(dot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy) {
  //   std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";

  if (*n <= 0) return 0;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);

  if (*incx == 1 && *incy == 1)
    return (make_vector(x, *n).cwiseProduct(make_vector(y, *n))).sum();
  else if (*incx > 0 && *incy > 0)
    return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, *incy))).sum();
  else if (*incx < 0 && *incy > 0)
    return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, *incy))).sum();
  else if (*incx > 0 && *incy < 0)
    return (make_vector(x, *n, *incx).cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
  else if (*incx < 0 && *incy < 0)
    return (make_vector(x, *n, -*incx).reverse().cwiseProduct(make_vector(y, *n, -*incy).reverse())).sum();
  else
    return 0;
}

// computes the Euclidean norm of a vector.
// FIXME
extern "C" Scalar EIGEN_BLAS_FUNC_NAME(nrm2)(int *n, Scalar *px, int *incx) {
  //   std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
  if (*n <= 0) return 0;

  Scalar *x = reinterpret_cast<Scalar *>(px);

  if (*incx == 1)
    return make_vector(x, *n).stableNorm();
  else
    return make_vector(x, *n, std::abs(*incx)).stableNorm();
}

EIGEN_BLAS_FUNC(rot)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pc, Scalar *ps) {
  //   std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
  if (*n <= 0) return;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);
  Scalar c = *reinterpret_cast<Scalar *>(pc);
  Scalar s = *reinterpret_cast<Scalar *>(ps);

  StridedVectorType vx(make_vector(x, *n, std::abs(*incx)));
  StridedVectorType vy(make_vector(y, *n, std::abs(*incy)));

  Eigen::Reverse<StridedVectorType> rvx(vx);
  Eigen::Reverse<StridedVectorType> rvy(vy);

  if (*incx < 0 && *incy > 0)
    Eigen::internal::apply_rotation_in_the_plane(rvx, vy, Eigen::JacobiRotation<Scalar>(c, s));
  else if (*incx > 0 && *incy < 0)
    Eigen::internal::apply_rotation_in_the_plane(vx, rvy, Eigen::JacobiRotation<Scalar>(c, s));
  else
    Eigen::internal::apply_rotation_in_the_plane(vx, vy, Eigen::JacobiRotation<Scalar>(c, s));
}

/*
// performs rotation of points in the modified plane.
EIGEN_BLAS_FUNC(rotm)(int *n, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *param)
{
  Scalar* x = reinterpret_cast<Scalar*>(px);
  Scalar* y = reinterpret_cast<Scalar*>(py);

  // TODO

  return 0;
}

// computes the modified parameters for a Givens rotation.
EIGEN_BLAS_FUNC(rotmg)(Scalar *d1, Scalar *d2, Scalar *x1, Scalar *x2, Scalar *param)
{
  // TODO

  return 0;
}
*/