level1_impl.h 3.92 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "common.h"

EIGEN_BLAS_FUNC(axpy)
(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy) {
  const Scalar *x = reinterpret_cast<const Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);
  Scalar alpha = *reinterpret_cast<const Scalar *>(palpha);

  if (*n <= 0) return;

  if (*incx == 1 && *incy == 1)
    make_vector(y, *n) += alpha * make_vector(x, *n);
  else if (*incx > 0 && *incy > 0)
    make_vector(y, *n, *incy) += alpha * make_vector(x, *n, *incx);
  else if (*incx > 0 && *incy < 0)
    make_vector(y, *n, -*incy).reverse() += alpha * make_vector(x, *n, *incx);
  else if (*incx < 0 && *incy > 0)
    make_vector(y, *n, *incy) += alpha * make_vector(x, *n, -*incx).reverse();
  else if (*incx < 0 && *incy < 0)
    make_vector(y, *n, -*incy).reverse() += alpha * make_vector(x, *n, -*incx).reverse();
}

EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
  if (*n <= 0) return;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);

  // be careful, *incx==0 is allowed !!
  if (*incx == 1 && *incy == 1)
    make_vector(y, *n) = make_vector(x, *n);
  else {
    if (*incx < 0) x = x - (*n - 1) * (*incx);
    if (*incy < 0) y = y - (*n - 1) * (*incy);
    for (int i = 0; i < *n; ++i) {
      *y = *x;
      x += *incx;
      y += *incy;
    }
  }
}

EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps) {
  using std::abs;
  using std::sqrt;

  Scalar &a = *reinterpret_cast<Scalar *>(pa);
  Scalar &b = *reinterpret_cast<Scalar *>(pb);
  RealScalar *c = pc;
  Scalar *s = reinterpret_cast<Scalar *>(ps);

#if !ISCOMPLEX
  Scalar r, z;
  Scalar aa = abs(a);
  Scalar ab = abs(b);
  if ((aa + ab) == Scalar(0)) {
    *c = 1;
    *s = 0;
    r = 0;
    z = 0;
  } else {
    r = sqrt(a * a + b * b);
    Scalar amax = aa > ab ? a : b;
    r = amax > 0 ? r : -r;
    *c = a / r;
    *s = b / r;
    z = 1;
    if (aa > ab) z = *s;
    if (ab > aa && *c != RealScalar(0)) z = Scalar(1) / *c;
  }
  *pa = r;
  *pb = z;
#else
  Scalar alpha;
  RealScalar norm, scale;
  if (abs(a) == RealScalar(0)) {
    *c = RealScalar(0);
    *s = Scalar(1);
    a = b;
  } else {
    scale = abs(a) + abs(b);
    norm = scale * sqrt((Eigen::numext::abs2(a / scale)) + (Eigen::numext::abs2(b / scale)));
    alpha = a / abs(a);
    *c = abs(a) / norm;
    *s = alpha * Eigen::numext::conj(b) / norm;
    a = alpha * norm;
  }
#endif

  //   JacobiRotation<Scalar> r;
  //   r.makeGivens(a,b);
  //   *c = r.c();
  //   *s = r.s();
}

EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx) {
  if (*n <= 0) return;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar alpha = *reinterpret_cast<Scalar *>(palpha);

  if (*incx == 1)
    make_vector(x, *n) *= alpha;
  else
    make_vector(x, *n, std::abs(*incx)) *= alpha;
}

EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy) {
  if (*n <= 0) return;

  Scalar *x = reinterpret_cast<Scalar *>(px);
  Scalar *y = reinterpret_cast<Scalar *>(py);

  if (*incx == 1 && *incy == 1)
    make_vector(y, *n).swap(make_vector(x, *n));
  else if (*incx > 0 && *incy > 0)
    make_vector(y, *n, *incy).swap(make_vector(x, *n, *incx));
  else if (*incx > 0 && *incy < 0)
    make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, *incx));
  else if (*incx < 0 && *incy > 0)
    make_vector(y, *n, *incy).swap(make_vector(x, *n, -*incx).reverse());
  else if (*incx < 0 && *incy < 0)
    make_vector(y, *n, -*incy).reverse().swap(make_vector(x, *n, -*incx).reverse());
}