JacobiSVD.h 34.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_JACOBISVD_H
#define EIGEN_JACOBISVD_H

// IWYU pragma: private
#include "./InternalHeaderCheck.h"

namespace Eigen {

namespace internal {

// forward declaration (needed by ICC)
// the empty body is required by MSVC
template <typename MatrixType, int Options, bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex>
struct svd_precondition_2x2_block_to_be_real {};

/*** QR preconditioners (R-SVD)
 ***
 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
 *** JacobiSVD which by itself is only able to work on square matrices.
 ***/

enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols };

template <typename MatrixType, int QRPreconditioner, int Case>
struct qr_preconditioner_should_do_anything {
  enum {
    a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic &&
        MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime,
    b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic &&
        MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime,
    ret = !((QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) ||
            (Case == PreconditionIfMoreRowsThanCols && bool(b)))
  };
};

template <typename MatrixType, int Options, int QRPreconditioner, int Case,
          bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret>
struct qr_preconditioner_impl {};

template <typename MatrixType, int Options, int QRPreconditioner, int Case>
class qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, Case, false> {
 public:
  void allocate(const JacobiSVD<MatrixType, Options>&) {}
  template <typename Xpr>
  bool run(JacobiSVD<MatrixType, Options>&, const Xpr&) {
    return false;
  }
};

/*** preconditioner using FullPivHouseholderQR ***/

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
                             true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum { WorkspaceSize = MatrixType::RowsAtCompileTime, MaxWorkspaceSize = MatrixType::MaxRowsAtCompileTime };

  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;

  void allocate(const SVDType& svd) {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU) m_workspace.resize(svd.rows());
  }
  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.rows() > matrix.cols()) {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>();
      if (svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace);
      if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
      return true;
    }
    return false;
  }

 private:
  typedef FullPivHouseholderQR<MatrixType> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
                             true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    MatrixOptions = traits<MatrixType>::Options
  };

  typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
                                                     MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
      TransposeTypeWithSameStorageOrder;

  void allocate(const SVDType& svd) {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.cols(), svd.rows());
    }
    if (svd.m_computeFullV) m_workspace.resize(svd.cols());
  }
  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.cols() > matrix.rows()) {
      m_qr.compute(matrix.adjoint());
      svd.m_workMatrix =
          m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint();
      if (svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace);
      if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
      return true;
    } else
      return false;
  }

 private:
  typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  typename plain_row_type<MatrixType>::type m_workspace;
};

/*** preconditioner using ColPivHouseholderQR ***/

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols,
                             true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum {
    WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
    MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
  };

  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;

  void allocate(const SVDType& svd) {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU)
      m_workspace.resize(svd.rows());
    else if (svd.m_computeThinU)
      m_workspace.resize(svd.cols());
  }
  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.rows() > matrix.cols()) {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>();
      if (svd.m_computeFullU)
        m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
      else if (svd.m_computeThinU) {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
      }
      if (svd.computeV()) svd.m_matrixV = m_qr.colsPermutation();
      return true;
    }
    return false;
  }

 private:
  typedef ColPivHouseholderQR<MatrixType> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows,
                             true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    MatrixOptions = internal::traits<MatrixType>::Options,
    WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
    MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
  };

  typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;

  typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
                                                     MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
      TransposeTypeWithSameStorageOrder;

  void allocate(const SVDType& svd) {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.cols(), svd.rows());
    }
    if (svd.m_computeFullV)
      m_workspace.resize(svd.cols());
    else if (svd.m_computeThinV)
      m_workspace.resize(svd.rows());
  }
  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.cols() > matrix.rows()) {
      m_qr.compute(matrix.adjoint());

      svd.m_workMatrix =
          m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint();
      if (svd.m_computeFullV)
        m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
      else if (svd.m_computeThinV) {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
      }
      if (svd.computeU()) svd.m_matrixU = m_qr.colsPermutation();
      return true;
    } else
      return false;
  }

 private:
  typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

/*** preconditioner using HouseholderQR ***/

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum {
    WorkspaceSize = internal::traits<SVDType>::MatrixUColsAtCompileTime,
    MaxWorkspaceSize = internal::traits<SVDType>::MatrixUMaxColsAtCompileTime
  };

  typedef Matrix<Scalar, 1, WorkspaceSize, RowMajor, 1, MaxWorkspaceSize> WorkspaceType;

  void allocate(const SVDType& svd) {
    if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.rows(), svd.cols());
    }
    if (svd.m_computeFullU)
      m_workspace.resize(svd.rows());
    else if (svd.m_computeThinU)
      m_workspace.resize(svd.cols());
  }
  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.rows() > matrix.cols()) {
      m_qr.compute(matrix);
      svd.m_workMatrix = m_qr.matrixQR().block(0, 0, matrix.cols(), matrix.cols()).template triangularView<Upper>();
      if (svd.m_computeFullU)
        m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace);
      else if (svd.m_computeThinU) {
        svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace);
      }
      if (svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols());
      return true;
    }
    return false;
  }

 private:
  typedef HouseholderQR<MatrixType> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

template <typename MatrixType, int Options>
class qr_preconditioner_impl<MatrixType, Options, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> {
 public:
  typedef typename MatrixType::Scalar Scalar;
  typedef JacobiSVD<MatrixType, Options> SVDType;

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
    MatrixOptions = internal::traits<MatrixType>::Options,
    WorkspaceSize = internal::traits<SVDType>::MatrixVColsAtCompileTime,
    MaxWorkspaceSize = internal::traits<SVDType>::MatrixVMaxColsAtCompileTime
  };

  typedef Matrix<Scalar, WorkspaceSize, 1, ColMajor, MaxWorkspaceSize, 1> WorkspaceType;

  typedef typename internal::make_proper_matrix_type<Scalar, ColsAtCompileTime, RowsAtCompileTime, MatrixOptions,
                                                     MaxColsAtCompileTime, MaxRowsAtCompileTime>::type
      TransposeTypeWithSameStorageOrder;

  void allocate(const SVDType& svd) {
    if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) {
      internal::destroy_at(&m_qr);
      internal::construct_at(&m_qr, svd.cols(), svd.rows());
    }
    if (svd.m_computeFullV)
      m_workspace.resize(svd.cols());
    else if (svd.m_computeThinV)
      m_workspace.resize(svd.rows());
  }

  template <typename Xpr>
  bool run(SVDType& svd, const Xpr& matrix) {
    if (matrix.cols() > matrix.rows()) {
      m_qr.compute(matrix.adjoint());

      svd.m_workMatrix =
          m_qr.matrixQR().block(0, 0, matrix.rows(), matrix.rows()).template triangularView<Upper>().adjoint();
      if (svd.m_computeFullV)
        m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace);
      else if (svd.m_computeThinV) {
        svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows());
        m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace);
      }
      if (svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows());
      return true;
    } else
      return false;
  }

 private:
  typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType;
  QRType m_qr;
  WorkspaceType m_workspace;
};

/*** 2x2 SVD implementation
 ***
 *** JacobiSVD consists in performing a series of 2x2 SVD subproblems
 ***/

template <typename MatrixType, int Options>
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, false> {
  typedef JacobiSVD<MatrixType, Options> SVD;
  typedef typename MatrixType::RealScalar RealScalar;
  static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; }
};

template <typename MatrixType, int Options>
struct svd_precondition_2x2_block_to_be_real<MatrixType, Options, true> {
  typedef JacobiSVD<MatrixType, Options> SVD;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) {
    using std::abs;
    using std::sqrt;
    Scalar z;
    JacobiRotation<Scalar> rot;
    RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p, p)) + numext::abs2(work_matrix.coeff(q, p)));

    const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
    const RealScalar precision = NumTraits<Scalar>::epsilon();

    if (numext::is_exactly_zero(n)) {
      // make sure first column is zero
      work_matrix.coeffRef(p, p) = work_matrix.coeffRef(q, p) = Scalar(0);

      if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) {
        // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when
        // computing n
        z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q);
        work_matrix.row(p) *= z;
        if (svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
      }
      if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) {
        z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q);
        work_matrix.row(q) *= z;
        if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
      }
      // otherwise the second row is already zero, so we have nothing to do.
    } else {
      rot.c() = conj(work_matrix.coeff(p, p)) / n;
      rot.s() = work_matrix.coeff(q, p) / n;
      work_matrix.applyOnTheLeft(p, q, rot);
      if (svd.computeU()) svd.m_matrixU.applyOnTheRight(p, q, rot.adjoint());
      if (abs(numext::imag(work_matrix.coeff(p, q))) > considerAsZero) {
        z = abs(work_matrix.coeff(p, q)) / work_matrix.coeff(p, q);
        work_matrix.col(q) *= z;
        if (svd.computeV()) svd.m_matrixV.col(q) *= z;
      }
      if (abs(numext::imag(work_matrix.coeff(q, q))) > considerAsZero) {
        z = abs(work_matrix.coeff(q, q)) / work_matrix.coeff(q, q);
        work_matrix.row(q) *= z;
        if (svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
      }
    }

    // update largest diagonal entry
    maxDiagEntry = numext::maxi<RealScalar>(
        maxDiagEntry, numext::maxi<RealScalar>(abs(work_matrix.coeff(p, p)), abs(work_matrix.coeff(q, q))));
    // and check whether the 2x2 block is already diagonal
    RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
    return abs(work_matrix.coeff(p, q)) > threshold || abs(work_matrix.coeff(q, p)) > threshold;
  }
};

template <typename MatrixType_, int Options>
struct traits<JacobiSVD<MatrixType_, Options> > : svd_traits<MatrixType_, Options> {
  typedef MatrixType_ MatrixType;
};

}  // end namespace internal

/** \ingroup SVD_Module
 *
 *
 * \class JacobiSVD
 *
 * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix
 *
 * \tparam MatrixType_ the type of the matrix of which we are computing the SVD decomposition
 * \tparam Options this optional parameter allows one to specify the type of QR decomposition that will be used
 * internally for the R-SVD step for non-square matrices. Additionally, it allows one to specify whether to compute thin
 * or full unitaries \a U and \a V. See discussion of possible values below.
 *
 * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
 *   \f[ A = U S V^* \f]
 * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero
 * outside of its main diagonal; the diagonal entries of S are known as the \em singular \em values of \a A and the
 * columns of \a U and \a V are known as the left and right \em singular \em vectors of \a A respectively.
 *
 * Singular values are always sorted in decreasing order.
 *
 * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask
 * for them explicitly.
 *
 * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p
 * matrix, letting \a m be the smaller value among \a n and \a p, there are only \a m singular vectors; the remaining
 * columns of \a U and \a V do not correspond to actual singular vectors. Asking for \em thin \a U or \a V means asking
 * for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, and \a V is then a p-by-m matrix.
 * Notice that thin \a U and \a V are all you need for (least squares) solving.
 *
 * Here's an example demonstrating basic usage:
 * \include JacobiSVD_basic.cpp
 * Output: \verbinclude JacobiSVD_basic.out
 *
 * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The
 * downside is that it's slower than bidiagonalizing SVD algorithms for large square matrices; however its complexity is
 * still \f$ O(n^2p) \f$ where \a n is the smaller dimension and \a p is the greater dimension, meaning that it is still
 * of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. In particular, like any R-SVD, it
 * takes advantage of non-squareness in that its complexity is only linear in the greater dimension.
 *
 * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is
 * guaranteed to terminate in finite (and reasonable) time.
 *
 * The possible QR preconditioners that can be set with Options template parameter are:
 * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR.
 * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR.
 *     Contrary to other QRs, it doesn't allow computing thin unitaries.
 * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses
 * non-pivoting QR. This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing
 * SVD algorithms (since bidiagonalization is inherently non-pivoting). However the resulting SVD is still more reliable
 * than bidiagonalizing SVDs because the Jacobi-based iterarive process is more reliable than the optimized bidiagonal
 * SVD iterations. \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that
 * you will only be computing JacobiSVD decompositions of square matrices. Non-square matrices require a QR
 * preconditioner. Using this option will result in faster compilation and smaller executable code. It won't
 * significantly speed up computation, since JacobiSVD is always checking if QR preconditioning is needed before
 * applying it anyway.
 *
 * One may also use the Options template parameter to specify how the unitaries should be computed. The options are
 * #ComputeThinU, #ComputeThinV, #ComputeFullU, #ComputeFullV. It is not possible to request both the thin and full
 * versions of a unitary. By default, unitaries will not be computed.
 *
 * You can set the QRPreconditioner and unitary options together: JacobiSVD<MatrixType,
 * ColPivHouseholderQRPreconditioner | ComputeThinU | ComputeFullV>
 *
 * \sa MatrixBase::jacobiSvd()
 */
template <typename MatrixType_, int Options_>
class JacobiSVD : public SVDBase<JacobiSVD<MatrixType_, Options_> > {
  typedef SVDBase<JacobiSVD> Base;

 public:
  typedef MatrixType_ MatrixType;
  typedef typename Base::Scalar Scalar;
  typedef typename Base::RealScalar RealScalar;
  enum : int {
    Options = Options_,
    QRPreconditioner = internal::get_qr_preconditioner(Options),
    RowsAtCompileTime = Base::RowsAtCompileTime,
    ColsAtCompileTime = Base::ColsAtCompileTime,
    DiagSizeAtCompileTime = Base::DiagSizeAtCompileTime,
    MaxRowsAtCompileTime = Base::MaxRowsAtCompileTime,
    MaxColsAtCompileTime = Base::MaxColsAtCompileTime,
    MaxDiagSizeAtCompileTime = Base::MaxDiagSizeAtCompileTime,
    MatrixOptions = Base::MatrixOptions
  };

  typedef typename Base::MatrixUType MatrixUType;
  typedef typename Base::MatrixVType MatrixVType;
  typedef typename Base::SingularValuesType SingularValuesType;
  typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, MatrixOptions, MaxDiagSizeAtCompileTime,
                 MaxDiagSizeAtCompileTime>
      WorkMatrixType;

  /** \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via JacobiSVD::compute(const MatrixType&).
   */
  JacobiSVD() {}

  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem size and \a Options template parameter.
   *
   * \sa JacobiSVD()
   */
  JacobiSVD(Index rows, Index cols) { allocate(rows, cols, internal::get_computation_options(Options)); }

  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem size.
   *
   * One \b cannot request unitaries using both the \a Options template parameter
   * and the constructor. If possible, prefer using the \a Options template parameter.
   *
   * \param rows number of rows for the input matrix
   * \param cols number of columns for the input matrix
   * \param computationOptions specify whether to compute Thin/Full unitaries U/V
   * \sa JacobiSVD()
   *
   * \deprecated Will be removed in the next major Eigen version. Options should
   * be specified in the \a Options template parameter.
   */
  EIGEN_DEPRECATED JacobiSVD(Index rows, Index cols, unsigned int computationOptions) {
    internal::check_svd_options_assertions<MatrixType, Options>(computationOptions, rows, cols);
    allocate(rows, cols, computationOptions);
  }

  /** \brief Constructor performing the decomposition of given matrix, using the custom options specified
   *         with the \a Options template parameter.
   *
   * \param matrix the matrix to decompose
   */
  template <typename Derived>
  explicit JacobiSVD(const MatrixBase<Derived>& matrix) {
    compute_impl(matrix, internal::get_computation_options(Options));
  }

  /** \brief Constructor performing the decomposition of given matrix using specified options
   *         for computing unitaries.
   *
   *  One \b cannot request unitiaries using both the \a Options template parameter
   *  and the constructor. If possible, prefer using the \a Options template parameter.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions specify whether to compute Thin/Full unitaries U/V
   *
   * \deprecated Will be removed in the next major Eigen version. Options should
   * be specified in the \a Options template parameter.
   */
  // EIGEN_DEPRECATED // TODO(cantonios): re-enable after fixing a few 3p libraries that error on deprecation warnings.
  template <typename Derived>
  JacobiSVD(const MatrixBase<Derived>& matrix, unsigned int computationOptions) {
    internal::check_svd_options_assertions<MatrixBase<Derived>, Options>(computationOptions, matrix.rows(),
                                                                         matrix.cols());
    compute_impl(matrix, computationOptions);
  }

  /** \brief Method performing the decomposition of given matrix. Computes Thin/Full unitaries U/V if specified
   *         using the \a Options template parameter or the class constructor.
   *
   * \param matrix the matrix to decompose
   */
  template <typename Derived>
  JacobiSVD& compute(const MatrixBase<Derived>& matrix) {
    return compute_impl(matrix, m_computationOptions);
  }

  /** \brief Method performing the decomposition of given matrix, as specified by
   *         the `computationOptions` parameter.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions specify whether to compute Thin/Full unitaries U/V
   *
   * \deprecated Will be removed in the next major Eigen version. Options should
   * be specified in the \a Options template parameter.
   */
  template <typename Derived>
  EIGEN_DEPRECATED JacobiSVD& compute(const MatrixBase<Derived>& matrix, unsigned int computationOptions) {
    internal::check_svd_options_assertions<MatrixBase<Derived>, Options>(m_computationOptions, matrix.rows(),
                                                                         matrix.cols());
    return compute_impl(matrix, computationOptions);
  }

  using Base::cols;
  using Base::computeU;
  using Base::computeV;
  using Base::diagSize;
  using Base::rank;
  using Base::rows;

  void allocate(Index rows_, Index cols_, unsigned int computationOptions) {
    if (Base::allocate(rows_, cols_, computationOptions)) return;
    eigen_assert(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
                 !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
                 "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
                 "Use the ColPivHouseholderQR preconditioner instead.");

    m_workMatrix.resize(diagSize(), diagSize());
    if (cols() > rows()) m_qr_precond_morecols.allocate(*this);
    if (rows() > cols()) m_qr_precond_morerows.allocate(*this);
  }

 private:
  template <typename Derived>
  JacobiSVD& compute_impl(const MatrixBase<Derived>& matrix, unsigned int computationOptions);

 protected:
  using Base::m_computationOptions;
  using Base::m_computeFullU;
  using Base::m_computeFullV;
  using Base::m_computeThinU;
  using Base::m_computeThinV;
  using Base::m_info;
  using Base::m_isAllocated;
  using Base::m_isInitialized;
  using Base::m_matrixU;
  using Base::m_matrixV;
  using Base::m_nonzeroSingularValues;
  using Base::m_prescribedThreshold;
  using Base::m_singularValues;
  using Base::m_usePrescribedThreshold;
  using Base::ShouldComputeThinU;
  using Base::ShouldComputeThinV;

  EIGEN_STATIC_ASSERT(!(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)) &&
                          !(ShouldComputeThinU && int(QRPreconditioner) == int(FullPivHouseholderQRPreconditioner)),
                      "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. "
                      "Use the ColPivHouseholderQR preconditioner instead.")

  template <typename MatrixType__, int Options__, bool IsComplex_>
  friend struct internal::svd_precondition_2x2_block_to_be_real;
  template <typename MatrixType__, int Options__, int QRPreconditioner_, int Case_, bool DoAnything_>
  friend struct internal::qr_preconditioner_impl;

  internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreColsThanRows>
      m_qr_precond_morecols;
  internal::qr_preconditioner_impl<MatrixType, Options, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols>
      m_qr_precond_morerows;
  WorkMatrixType m_workMatrix;
};

template <typename MatrixType, int Options>
template <typename Derived>
JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute_impl(const MatrixBase<Derived>& matrix,
                                                                             unsigned int computationOptions) {
  EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(Derived, MatrixType);
  EIGEN_STATIC_ASSERT((std::is_same<typename Derived::Scalar, typename MatrixType::Scalar>::value),
                      Input matrix must have the same Scalar type as the BDCSVD object.);

  using std::abs;

  allocate(matrix.rows(), matrix.cols(), computationOptions);

  // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number
  // of iterations, only worsening the precision of U and V as we accumulate more rotations
  const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon();

  // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286)
  const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();

  // Scaling factor to reduce over/under-flows
  RealScalar scale = matrix.cwiseAbs().template maxCoeff<PropagateNaN>();
  if (!(numext::isfinite)(scale)) {
    m_isInitialized = true;
    m_info = InvalidInput;
    m_nonzeroSingularValues = 0;
    return *this;
  }
  if (numext::is_exactly_zero(scale)) scale = RealScalar(1);

  /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */

  if (rows() != cols()) {
    m_qr_precond_morecols.run(*this, matrix / scale);
    m_qr_precond_morerows.run(*this, matrix / scale);
  } else {
    m_workMatrix =
        matrix.template topLeftCorner<DiagSizeAtCompileTime, DiagSizeAtCompileTime>(diagSize(), diagSize()) / scale;
    if (m_computeFullU) m_matrixU.setIdentity(rows(), rows());
    if (m_computeThinU) m_matrixU.setIdentity(rows(), diagSize());
    if (m_computeFullV) m_matrixV.setIdentity(cols(), cols());
    if (m_computeThinV) m_matrixV.setIdentity(cols(), diagSize());
  }

  /*** step 2. The main Jacobi SVD iteration. ***/
  RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff();

  bool finished = false;
  while (!finished) {
    finished = true;

    // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix

    for (Index p = 1; p < diagSize(); ++p) {
      for (Index q = 0; q < p; ++q) {
        // if this 2x2 sub-matrix is not diagonal already...
        // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't
        // keep us iterating forever. Similarly, small denormal numbers are considered zero.
        RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry);
        if (abs(m_workMatrix.coeff(p, q)) > threshold || abs(m_workMatrix.coeff(q, p)) > threshold) {
          finished = false;
          // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal
          // the complex to real operation returns true if the updated 2x2 block is not already diagonal
          if (internal::svd_precondition_2x2_block_to_be_real<MatrixType, Options>::run(m_workMatrix, *this, p, q,
                                                                                        maxDiagEntry)) {
            JacobiRotation<RealScalar> j_left, j_right;
            internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right);

            // accumulate resulting Jacobi rotations
            m_workMatrix.applyOnTheLeft(p, q, j_left);
            if (computeU()) m_matrixU.applyOnTheRight(p, q, j_left.transpose());

            m_workMatrix.applyOnTheRight(p, q, j_right);
            if (computeV()) m_matrixV.applyOnTheRight(p, q, j_right);

            // keep track of the largest diagonal coefficient
            maxDiagEntry = numext::maxi<RealScalar>(
                maxDiagEntry, numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p, p)), abs(m_workMatrix.coeff(q, q))));
          }
        }
      }
    }
  }

  /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values
   * ***/

  for (Index i = 0; i < diagSize(); ++i) {
    // For a complex matrix, some diagonal coefficients might note have been
    // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part
    // of some diagonal entry might not be null.
    if (NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i, i))) > considerAsZero) {
      RealScalar a = abs(m_workMatrix.coeff(i, i));
      m_singularValues.coeffRef(i) = abs(a);
      if (computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i, i) / a;
    } else {
      // m_workMatrix.coeff(i,i) is already real, no difficulty:
      RealScalar a = numext::real(m_workMatrix.coeff(i, i));
      m_singularValues.coeffRef(i) = abs(a);
      if (computeU() && (a < RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i);
    }
  }

  m_singularValues *= scale;

  /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/

  m_nonzeroSingularValues = diagSize();
  for (Index i = 0; i < diagSize(); i++) {
    Index pos;
    RealScalar maxRemainingSingularValue = m_singularValues.tail(diagSize() - i).maxCoeff(&pos);
    if (numext::is_exactly_zero(maxRemainingSingularValue)) {
      m_nonzeroSingularValues = i;
      break;
    }
    if (pos) {
      pos += i;
      std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
      if (computeU()) m_matrixU.col(pos).swap(m_matrixU.col(i));
      if (computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
    }
  }

  m_isInitialized = true;
  return *this;
}

/** \svd_module
 *
 * \return the singular value decomposition of \c *this computed by two-sided
 * Jacobi transformations.
 *
 * \sa class JacobiSVD
 */
template <typename Derived>
template <int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd() const {
  return JacobiSVD<PlainObject, Options>(*this);
}

template <typename Derived>
template <int Options>
JacobiSVD<typename MatrixBase<Derived>::PlainObject, Options> MatrixBase<Derived>::jacobiSvd(
    unsigned int computationOptions) const {
  return JacobiSVD<PlainObject, Options>(*this, computationOptions);
}

}  // end namespace Eigen

#endif  // EIGEN_JACOBISVD_H