"configs/common/data/bert_dataset.py" did not exist on "fd158e88e82c3fa848017c62a7eccb49a5c64f78"
EulerAngles.h 8.16 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2023 Juraj Oršulić, University of Zagreb <juraj.orsulic@fer.hr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_EULERANGLES_H
#define EIGEN_EULERANGLES_H

// IWYU pragma: private
#include "./InternalHeaderCheck.h"

namespace Eigen {

/** \geometry_module \ingroup Geometry_Module
 *
 *
 * \returns the canonical Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a
 * a0,\a a1,\a a2)
 *
 * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}.
 * For instance, in:
 * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode
 * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that
 * we have the following equality:
 * \code
 * mat == AngleAxisf(ea[0], Vector3f::UnitZ())
 *      * AngleAxisf(ea[1], Vector3f::UnitX())
 *      * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
 * This corresponds to the right-multiply conventions (with right hand side frames).
 *
 * For Tait-Bryan angle configurations (a0 != a2), the returned angles are in the ranges [-pi:pi]x[-pi/2:pi/2]x[-pi:pi].
 * For proper Euler angle configurations (a0 == a2), the returned angles are in the ranges [-pi:pi]x[0:pi]x[-pi:pi].
 *
 * The approach used is also described here:
 * https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2012/07/euler-angles.pdf
 *
 * \sa class AngleAxis
 */
template <typename Derived>
EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar, 3, 1> MatrixBase<Derived>::canonicalEulerAngles(
    Index a0, Index a1, Index a2) const {
  /* Implemented from Graphics Gems IV */
  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)

  Matrix<Scalar, 3, 1> res;

  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
  const Index i = a0;
  const Index j = (a0 + 1 + odd) % 3;
  const Index k = (a0 + 2 - odd) % 3;

  if (a0 == a2) {
    // Proper Euler angles (same first and last axis).
    // The i, j, k indices enable addressing the input matrix as the XYX archetype matrix (see Graphics Gems IV),
    // where e.g. coeff(k, i) means third column, first row in the XYX archetype matrix:
    //  c2      s2s1              s2c1
    //  s2s3   -c2s1s3 + c1c3    -c2c1s3 - s1c3
    // -s2c3    c2s1c3 + c1s3     c2c1c3 - s1s3

    // Note: s2 is always positive.
    Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
    if (odd) {
      res[0] = numext::atan2(coeff(j, i), coeff(k, i));
      // s2 is always positive, so res[1] will be within the canonical [0, pi] range
      res[1] = numext::atan2(s2, coeff(i, i));
    } else {
      // In the !odd case, signs of all three angles are flipped at the very end. To keep the solution within the
      // canonical range, we flip the solution and make res[1] always negative here (since s2 is always positive,
      // -atan2(s2, c2) will always be negative). The final flip at the end due to !odd will thus make res[1] positive
      // and canonical. NB: in the general case, there are two correct solutions, but only one is canonical. For proper
      // Euler angles, flipping from one solution to the other involves flipping the sign of the second angle res[1] and
      // adding/subtracting pi to the first and third angles. The addition/subtraction of pi to the first angle res[0]
      // is handled here by flipping the signs of arguments to atan2, while the calculation of the third angle does not
      // need special adjustment since it uses the adjusted res[0] as the input and produces a correct result.
      res[0] = numext::atan2(-coeff(j, i), -coeff(k, i));
      res[1] = -numext::atan2(s2, coeff(i, i));
    }

    // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
    // we can compute their respective rotation, and apply its inverse to M. Since the result must
    // be a rotation around x, we have:
    //
    //  c2  s1.s2 c1.s2                   1  0   0
    //  0   c1    -s1       *    M    =   0  c3  s3
    //  -s2 s1.c2 c1.c2                   0 -s3  c3
    //
    //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3

    Scalar s1 = numext::sin(res[0]);
    Scalar c1 = numext::cos(res[0]);
    res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
  } else {
    // Tait-Bryan angles (all three axes are different; typically used for yaw-pitch-roll calculations).
    // The i, j, k indices enable addressing the input matrix as the XYZ archetype matrix (see Graphics Gems IV),
    // where e.g. coeff(k, i) means third column, first row in the XYZ archetype matrix:
    //  c2c3    s2s1c3 - c1s3     s2c1c3 + s1s3
    //  c2s3    s2s1s3 + c1c3     s2c1s3 - s1c3
    // -s2      c2s1              c2c1

    res[0] = numext::atan2(coeff(j, k), coeff(k, k));

    Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
    // c2 is always positive, so the following atan2 will always return a result in the correct canonical middle angle
    // range [-pi/2, pi/2]
    res[1] = numext::atan2(-coeff(i, k), c2);

    Scalar s1 = numext::sin(res[0]);
    Scalar c1 = numext::cos(res[0]);
    res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
  }
  if (!odd) {
    res = -res;
  }

  return res;
}

/** \geometry_module \ingroup Geometry_Module
 *
 *
 * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a
 * a2)
 *
 * NB: The returned angles are in non-canonical ranges [0:pi]x[-pi:pi]x[-pi:pi]. For canonical Tait-Bryan/proper Euler
 * ranges, use canonicalEulerAngles.
 *
 * \sa MatrixBase::canonicalEulerAngles
 * \sa class AngleAxis
 */
template <typename Derived>
EIGEN_DEPRECATED EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>
MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const {
  /* Implemented from Graphics Gems IV */
  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)

  Matrix<Scalar, 3, 1> res;

  const Index odd = ((a0 + 1) % 3 == a1) ? 0 : 1;
  const Index i = a0;
  const Index j = (a0 + 1 + odd) % 3;
  const Index k = (a0 + 2 - odd) % 3;

  if (a0 == a2) {
    res[0] = numext::atan2(coeff(j, i), coeff(k, i));
    if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) {
      if (res[0] > Scalar(0)) {
        res[0] -= Scalar(EIGEN_PI);
      } else {
        res[0] += Scalar(EIGEN_PI);
      }

      Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
      res[1] = -numext::atan2(s2, coeff(i, i));
    } else {
      Scalar s2 = numext::hypot(coeff(j, i), coeff(k, i));
      res[1] = numext::atan2(s2, coeff(i, i));
    }

    // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
    // we can compute their respective rotation, and apply its inverse to M. Since the result must
    // be a rotation around x, we have:
    //
    //  c2  s1.s2 c1.s2                   1  0   0
    //  0   c1    -s1       *    M    =   0  c3  s3
    //  -s2 s1.c2 c1.c2                   0 -s3  c3
    //
    //  Thus:  m11.c1 - m21.s1 = c3  &   m12.c1 - m22.s1 = s3

    Scalar s1 = numext::sin(res[0]);
    Scalar c1 = numext::cos(res[0]);
    res[2] = numext::atan2(c1 * coeff(j, k) - s1 * coeff(k, k), c1 * coeff(j, j) - s1 * coeff(k, j));
  } else {
    res[0] = numext::atan2(coeff(j, k), coeff(k, k));
    Scalar c2 = numext::hypot(coeff(i, i), coeff(i, j));
    if ((odd && res[0] < Scalar(0)) || ((!odd) && res[0] > Scalar(0))) {
      if (res[0] > Scalar(0)) {
        res[0] -= Scalar(EIGEN_PI);
      } else {
        res[0] += Scalar(EIGEN_PI);
      }
      res[1] = numext::atan2(-coeff(i, k), -c2);
    } else {
      res[1] = numext::atan2(-coeff(i, k), c2);
    }
    Scalar s1 = numext::sin(res[0]);
    Scalar c1 = numext::cos(res[0]);
    res[2] = numext::atan2(s1 * coeff(k, i) - c1 * coeff(j, i), c1 * coeff(j, j) - s1 * coeff(k, j));
  }
  if (!odd) {
    res = -res;
  }

  return res;
}

}  // end namespace Eigen

#endif  // EIGEN_EULERANGLES_H