Unverified Commit ffb1f7bf authored by wang jiahao's avatar wang jiahao Committed by GitHub
Browse files

Merge pull request #1210 from kvcache-ai/support-amx-qwen

Support amx and qwen3
parents ba92cf1a 8f76c37d
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen2MoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Qwen2MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen2MoeModel`]. It is used to instantiate a
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of
Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B").
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen2MoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 5632):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 16):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 1408):
Intermediate size of the routed expert.
shared_expert_intermediate_size (`int`, *optional*, defaults to 5632):
Intermediate size of the shared expert.
num_experts_per_tok (`int`, *optional*, defaults to 4):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 60):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
Indicate which layers use Qwen2MoeMLP rather than Qwen2MoeSparseMoeBlock
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
```python
>>> from transformers import Qwen2MoeModel, Qwen2MoeConfig
>>> # Initializing a Qwen2MoE style configuration
>>> configuration = Qwen2MoeConfig()
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration
>>> model = Qwen2MoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen2_moe"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=5632,
num_hidden_layers=24,
num_attention_heads=16,
num_key_value_heads=16,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=1408,
shared_expert_intermediate_size=5632,
num_experts_per_tok=4,
num_experts=60,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.shared_expert_intermediate_size = shared_expert_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
\ No newline at end of file
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen3MoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Qwen3MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3MoeModel`]. It is used to instantiate a
Qwen3MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of [Qwen/Qwen3-MoE-15B-A2B](https://huggingface.co/Qwen/Qwen3-15B-A2B).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen3MoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen3MoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 6144):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 768):
Intermediate size of the routed expert.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 128):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
Indicate which layers use Qwen3MoeMLP rather than Qwen3MoeSparseMoeBlock
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
```python
>>> from transformers import Qwen3MoeModel, Qwen3MoeConfig
>>> # Initializing a Qwen3MoE style configuration
>>> configuration = Qwen3MoeConfig()
>>> # Initializing a model from the Qwen3-15B-A2B" style configuration
>>> model = Qwen3MoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_moe"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen3Moe`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=6144,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=4,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=768,
num_experts_per_tok=8,
num_experts=128,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["Qwen3MoeConfig"]
\ No newline at end of file
...@@ -275,3 +275,59 @@ class KDeepSeekV3Cache(nn.Module): ...@@ -275,3 +275,59 @@ class KDeepSeekV3Cache(nn.Module):
return page_idx, page_offset return page_idx, page_offset
class KGQACache(nn.Module):
def __init__(
self,
config: PretrainedConfig,
page_size: int = 256,
dtype=torch.bfloat16,
device=torch.device("cuda:0"),
):
super().__init__()
self.config = config
self.dtype = dtype
self.device = device
self.page_size = page_size
self.k_caches = []
self.v_caches = []
def load(self, inference_context: sched_ext.InferenceContext):
print(self.config.num_hidden_layers)
for i in range(self.config.num_hidden_layers):
self.k_caches.append(
inference_context.k_cache[0][i]
)
self.v_caches.append(
inference_context.v_cache[0][i]
)
self.max_cache_len = self.k_caches[0].shape[0]*self.k_caches[0].shape[1]
def get_page_table(self, cache_position: torch.Tensor, q_indptr: torch.Tensor, kv_indptr: torch.Tensor, kv_indices: torch.Tensor, bsz_tensors: torch.tensor):
page_offset = cache_position % self.page_size
page_idx_local = cache_position // self.page_size
query_ids = torch.zeros_like(cache_position)
for i in range(len(q_indptr) - 1):
start_idx = q_indptr[i]
end_idx = q_indptr[i + 1]
query_ids[start_idx:end_idx] = i
page_idx = torch.zeros_like(page_idx_local)
for i in range(bsz_tensors[0]):
query_id = query_ids[i]
local_block = page_idx_local[i]
start_block = kv_indptr[query_id]
if local_block < kv_indptr[query_id + 1] - kv_indptr[query_id]:
page_idx[i] = kv_indices[start_block + local_block]
return page_idx, page_offset
def get_k_cache(self, layer_idx):
return self.k_caches[layer_idx]
def get_v_cache(self, layer_idx):
return self.v_caches[layer_idx]
\ No newline at end of file
"""
Date: 2024-11-06 10:05:11
LastEditors: djw
LastEditTime: 2024-11-13 07:50:51
"""
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
from ktransformers.models.custom_cache import KGQACache
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeModel, Qwen2MoePreTrainedModel
from ktransformers.models.configuration_qwen2_moe import Qwen2MoeConfig
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
torch.set_grad_enabled(False)
torch.set_default_dtype(torch.bfloat16)
import flashinfer
class KQwen2MoeForCausalLM(Qwen2MoePreTrainedModel):
cache: KGQACache
use_cuda_graph = False
def __init__(
self,
config: Qwen2MoeConfig,
cache,
):
super().__init__(config)
self.model = Qwen2MoeModel(config)
self.config = config
self.cache = cache
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.attn = [None] * 10
def init_wrapper(self, use_cuda_graph, device, max_batch_token, max_batch_size, max_pages, cuda_graph_idx = 0):
self.attn[cuda_graph_idx] = flashInferAttn(use_cuda_graph=use_cuda_graph, max_batch_token=max_batch_token, max_batch_size=max_batch_size, max_pages=max_pages, device=device)
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
features = []
for i in range(batch.batch_size):
tokens = batch.minibatch.tokens.contiguous()
feature = (
self.model.embed_tokens(tokens.to(torch.device('cpu')))
.to(torch.bfloat16)
.to(device=device)
)
features.append(feature)
return features
def forward(
self,
batch: ForwardBatchInput | None = None,
features: List[torch.Tensor] | None = None,
bsz_tensors: torch.Tensor | None = None,
num_tokens_tensors: torch.Tensor | None = None,
page_idx: torch.Tensor | None = None,
page_offset: torch.Tensor | None = None,
cuda_graph_idx: int | None = 0
) -> ForwardBatchOutput:
current_stream = torch.cuda.current_stream()
forward_batch_output = ForwardBatchOutput()
hidden_states = features[0]
self.attn[cuda_graph_idx].calc_batch_indices(hidden_states.shape[0])
with torch.cuda.stream(current_stream):
residual = torch.zeros_like(hidden_states)
for i, decode_layer in enumerate(self.model.layers):
if self.model.transfer_map is not None and i in self.model.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.model.transfer_map[i]
if cur_device not in self.model.stream_device_map:
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.model.transfer_map[i], non_blocking=True
)
batch.minibatch.position_ids = (
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
if batch.minibatch.position_ids is not None
else None
)
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.self_attn(hidden_states, self.cache,
position_ids=batch.minibatch.position_ids,
wrapper=self.attn[cuda_graph_idx], bsz_tensors=num_tokens_tensors,
page_idx=page_idx,
page_offset=page_offset
)
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors, cuda_graph_idx)
hidden_states = hidden_states.squeeze(0)
forward_batch_output = ForwardBatchOutput()
with torch.cuda.stream(current_stream):
local_logit = self.lm_head(self.model.norm(hidden_states, num_tokens_tensors, residual)[0], num_tokens_tensors)
forward_batch_output.logits.append(local_logit)
return forward_batch_output
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
num_q_heads: int,
num_kv_heads: int,
head_dim: int,
page_size: int,
causal: bool,
q_data_type: torch.dtype,
kv_data_type: torch.dtype,
cuda_graph_idx: int = 0
):
minibatch = batch.minibatch
self.attn[cuda_graph_idx].plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
minibatch.kv_last_page_len, bsz_tensors, num_tokens_tensors,num_q_heads, num_kv_heads, head_dim, page_size, causal=causal, q_data_type=q_data_type, kv_data_type=kv_data_type)
\ No newline at end of file
"""
Date: 2024-11-06 10:05:11
LastEditors: djw
LastEditTime: 2024-11-13 07:50:51
"""
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
from ktransformers.models.custom_cache import KGQACache
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeModel, Qwen3MoePreTrainedModel
from ktransformers.models.configuration_qwen3_moe import Qwen3MoeConfig
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
torch.set_grad_enabled(False)
torch.set_default_dtype(torch.bfloat16)
import flashinfer
class KQwen3MoeForCausalLM(Qwen3MoePreTrainedModel):
cache: KGQACache
use_cuda_graph = False
def __init__(
self,
config: Qwen3MoeConfig,
cache = None,
):
super().__init__(config)
self.model = Qwen3MoeModel(config)
self.config = config
self.cache = cache
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.attn = [None] * 10
def init_wrapper(self, use_cuda_graph, device, max_batch_token, max_batch_size, max_pages, cuda_graph_idx = 0):
self.attn[cuda_graph_idx] = flashInferAttn(use_cuda_graph=use_cuda_graph, max_batch_token=max_batch_token, max_batch_size=max_batch_size, max_pages=max_pages, device=device)
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
features = []
for i in range(batch.batch_size):
tokens = batch.minibatch.tokens.contiguous()
feature = (
self.model.embed_tokens(tokens.to(torch.device('cpu')))
.to(torch.bfloat16)
.to(device=device)
)
features.append(feature)
return features
def forward(
self,
batch: ForwardBatchInput | None = None,
features: List[torch.Tensor] | None = None,
bsz_tensors: torch.Tensor | None = None,
num_tokens_tensors: torch.Tensor | None = None,
page_idx: torch.Tensor | None = None,
page_offset: torch.Tensor | None = None,
cuda_graph_idx: int | None = 0
) -> ForwardBatchOutput:
current_stream = torch.cuda.current_stream()
forward_batch_output = ForwardBatchOutput()
hidden_states = features[0]
self.attn[cuda_graph_idx].calc_batch_indices(hidden_states.shape[0])
with torch.cuda.stream(current_stream):
residual = torch.zeros_like(hidden_states)
for i, decode_layer in enumerate(self.model.layers):
if self.model.transfer_map is not None and i in self.model.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.model.transfer_map[i]
if cur_device not in self.model.stream_device_map:
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.model.transfer_map[i], non_blocking=True
)
batch.minibatch.position_ids = (
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
if batch.minibatch.position_ids is not None
else None
)
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.self_attn(hidden_states, self.cache,
position_ids=batch.minibatch.position_ids,
wrapper=self.attn[cuda_graph_idx], bsz_tensors=num_tokens_tensors,
page_idx=page_idx,
page_offset=page_offset
)
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors, cuda_graph_idx)
hidden_states = hidden_states.squeeze(0)
forward_batch_output = ForwardBatchOutput()
with torch.cuda.stream(current_stream):
local_logit = self.lm_head(self.model.norm(hidden_states, num_tokens_tensors, residual)[0], num_tokens_tensors)
forward_batch_output.logits.append(local_logit)
return forward_batch_output
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
num_q_heads: int,
num_kv_heads: int,
head_dim: int,
page_size: int,
causal: bool,
q_data_type: torch.dtype,
kv_data_type: torch.dtype,
cuda_graph_idx: int = 0
):
minibatch = batch.minibatch
self.attn[cuda_graph_idx].plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
minibatch.kv_last_page_len, bsz_tensors, num_tokens_tensors, num_q_heads, num_kv_heads, head_dim, page_size, causal=causal, q_data_type=q_data_type, kv_data_type=kv_data_type)
\ No newline at end of file
This diff is collapsed.
...@@ -411,4 +411,30 @@ class RotaryEmbeddingV4(BaseInjectedModule): ...@@ -411,4 +411,30 @@ class RotaryEmbeddingV4(BaseInjectedModule):
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
# self.register_buffer("inv_freq", inv_freq, persistent=False) # self.register_buffer("inv_freq", inv_freq, persistent=False)
# For BC we register cos and sin cached # For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings self.max_seq_len_cached = max_position_embeddings
\ No newline at end of file
class KQwen3MoeRotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
)
self.orig_module.__init__(
config,
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(
self.orig_module.config
)
\ No newline at end of file
...@@ -762,92 +762,3 @@ class KLlamaAttention(BaseInjectedModule): ...@@ -762,92 +762,3 @@ class KLlamaAttention(BaseInjectedModule):
attn_weights = None attn_weights = None
return attn_output, attn_weights, past_key_value return attn_output, attn_weights, past_key_value
class flashinfer_attn(BaseInjectedModule, DeepseekV2Attention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
def get_absorbed(self) -> Tuple[torch.Tensor, torch.Tensor]:
if not (hasattr(self, 'q_absorb') and hasattr(self, 'out_absorb')):
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :].reshape(-1, self.kv_lora_rank)
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :].reshape(-1, self.kv_lora_rank)
self.q_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.qk_nope_head_dim,
bias=False, dtype=q_absorb.dtype, device=q_absorb.device)
self.q_absorb.weight.data = q_absorb
self.out_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.v_head_dim,
bias=False, dtype=out_absorb.dtype, device=out_absorb.device)
self.out_absorb.weight.data = out_absorb
#del self.orig_module.kv_b_proj
q_absorb = self.q_absorb.weight.view(self.num_heads, self.qk_nope_head_dim, self.kv_lora_rank)
out_absorb = self.out_absorb.weight.view(self.num_heads, self.v_head_dim, self.kv_lora_rank)
return q_absorb, out_absorb
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KDeepSeekV3Cache,
position_ids: torch.Tensor,
wrapper: BatchMLAPagedAttentionWrapper,
num_tokens_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states, num_tokens_tensors)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states, num_tokens_tensors), num_tokens_tensors), num_tokens_tensors)
q = q.view(q_len, self.num_heads, self.q_head_dim)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states, num_tokens_tensors)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
compressed_kv = compressed_kv.contiguous()
compressed_kv = self.kv_a_layernorm(compressed_kv, num_tokens_tensors)
k_pe = k_pe.view(q_len, 1, self.qk_rope_head_dim)
compressed_kv = compressed_kv.view(q_len, 1, self.kv_lora_rank)
cos, sin = self.rotary_emb(q_pe, position_ids.unsqueeze(0))
q_pe, k_pe = apply_rotary_pos_emb(q_pe.unsqueeze(0), k_pe.unsqueeze(0), cos, sin, unsqueeze_dim=2)
q_pe = q_pe.squeeze(0)
if kv_cache is not None:
# page_idx, page_offset = kv_cache.get_page_table(position_ids, q_indptr, kv_indptr, kv_indices)
cache_kwargs = {"sin": sin, "cos": cos, "page_idx": page_idx, "page_offset": page_offset} # Specific to RoPE models
compressed_kv_with_k_pe = kv_cache.update(compressed_kv.unsqueeze(0), k_pe, self.layer_idx, page_idx, page_offset, cache_kwargs)
compressed_kv = compressed_kv_with_k_pe [:, :, :, :self.kv_lora_rank].view(-1, kv_cache.page_size, self.kv_lora_rank)
k_pe = compressed_kv_with_k_pe [:, :, :, self.kv_lora_rank:].view(-1, kv_cache.page_size, self.qk_rope_head_dim)
q_absorb, out_absorb = self.get_absorbed()
q_nope = q_nope.transpose(0, 1) # q_len is 1, no GPU overhead, same below
q_nope = torch.matmul(q_nope, q_absorb) # batched MM
q_nope = q_nope.transpose(0, 1)
# q_nope.squeeze_(1)
# q_pe.squeeze_(1)
attn_output = wrapper.run(q_nope, q_pe, compressed_kv, k_pe).view(q_len, self.num_heads, self.kv_lora_rank)
attn_output = attn_output.transpose(0, 1)
attn_output = torch.matmul(attn_output, out_absorb.mT) # [self.num_heads, q_len, self.v_head_dim]
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output, num_tokens_tensors)
return attn_output
'''
Description :
Author : Boxin Zhang
Version : 0.2.5
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import torch
from torch import nn
from ktransformers.models.modeling_deepseek import DeepseekV2Attention, apply_rotary_pos_emb
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeAttention
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeAttention
from typing import Optional, Tuple
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
import logging
from transformers.configuration_utils import PretrainedConfig
from flashinfer import BatchMLAPagedAttentionWrapper
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
from ktransformers.models.custom_cache import KDeepSeekV3Cache, KGQACache
logger = logging.getLogger("attention")
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class flashinfer_attn(BaseInjectedModule, DeepseekV2Attention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
def get_absorbed(self) -> Tuple[torch.Tensor, torch.Tensor]:
if not (hasattr(self, 'q_absorb') and hasattr(self, 'out_absorb')):
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :].reshape(-1, self.kv_lora_rank)
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :].reshape(-1, self.kv_lora_rank)
self.q_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.qk_nope_head_dim,
bias=False, dtype=q_absorb.dtype, device=q_absorb.device)
self.q_absorb.weight.data = q_absorb
self.out_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.v_head_dim,
bias=False, dtype=out_absorb.dtype, device=out_absorb.device)
self.out_absorb.weight.data = out_absorb
#del self.orig_module.kv_b_proj
q_absorb = self.q_absorb.weight.view(self.num_heads, self.qk_nope_head_dim, self.kv_lora_rank)
out_absorb = self.out_absorb.weight.view(self.num_heads, self.v_head_dim, self.kv_lora_rank)
return q_absorb, out_absorb
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KDeepSeekV3Cache,
position_ids: torch.Tensor,
wrapper: BatchMLAPagedAttentionWrapper,
num_tokens_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states, num_tokens_tensors)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states, num_tokens_tensors), num_tokens_tensors), num_tokens_tensors)
q = q.view(q_len, self.num_heads, self.q_head_dim)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states, num_tokens_tensors)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
compressed_kv = compressed_kv.contiguous()
compressed_kv = self.kv_a_layernorm(compressed_kv, num_tokens_tensors)
k_pe = k_pe.view(q_len, 1, self.qk_rope_head_dim)
compressed_kv = compressed_kv.view(q_len, 1, self.kv_lora_rank)
cos, sin = self.rotary_emb(q_pe, position_ids.unsqueeze(0))
q_pe, k_pe = apply_rotary_pos_emb(q_pe.unsqueeze(0), k_pe.unsqueeze(0), cos, sin, unsqueeze_dim=2)
q_pe = q_pe.squeeze(0)
if kv_cache is not None:
# page_idx, page_offset = kv_cache.get_page_table(position_ids, q_indptr, kv_indptr, kv_indices)
cache_kwargs = {"sin": sin, "cos": cos, "page_idx": page_idx, "page_offset": page_offset} # Specific to RoPE models
compressed_kv_with_k_pe = kv_cache.update(compressed_kv.unsqueeze(0), k_pe, self.layer_idx, page_idx, page_offset, cache_kwargs)
compressed_kv = compressed_kv_with_k_pe [:, :, :, :self.kv_lora_rank].view(-1, kv_cache.page_size, self.kv_lora_rank)
k_pe = compressed_kv_with_k_pe [:, :, :, self.kv_lora_rank:].view(-1, kv_cache.page_size, self.qk_rope_head_dim)
q_absorb, out_absorb = self.get_absorbed()
q_nope = q_nope.transpose(0, 1) # q_len is 1, no GPU overhead, same below
q_nope = torch.matmul(q_nope, q_absorb) # batched MM
q_nope = q_nope.transpose(0, 1)
# q_nope.squeeze_(1)
# q_pe.squeeze_(1)
attn_output = wrapper.run(q_nope, q_pe, compressed_kv, k_pe).view(q_len, self.num_heads, self.kv_lora_rank)
attn_output = attn_output.transpose(0, 1)
attn_output = torch.matmul(attn_output, out_absorb.mT) # [self.num_heads, q_len, self.v_head_dim]
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output, num_tokens_tensors)
return attn_output
class KQwen2MoeAttention(BaseInjectedModule, Qwen2MoeAttention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KGQACache,
position_ids: torch.Tensor,
wrapper: flashInferAttn,
bsz_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, bsz_tensors)
key_states = self.k_proj(hidden_states, bsz_tensors)
value_states = self.v_proj(hidden_states, bsz_tensors)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_key_value_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_key_value_heads, self.head_dim)
cos, sin = self.rotary_emb(value_states.unsqueeze(0), position_ids.unsqueeze(0))
query_states, key_states = self.apply_rotary_pos_emb(query_states.unsqueeze(0), key_states.unsqueeze(0), cos, sin, unsqueeze_dim=2)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
value_states = value_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
k_cache = kv_cache.get_k_cache(self.layer_idx)
v_cache = kv_cache.get_v_cache(self.layer_idx)
attn_output = wrapper.forward(query_states, k_cache, v_cache, key_states, value_states)
attn_output = self.o_proj(attn_output.view(q_len, self.num_heads * self.head_dim), bsz_tensors)
return attn_output
class KQwen3MoeAttention(BaseInjectedModule, Qwen3MoeAttention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KGQACache,
position_ids: torch.Tensor,
wrapper: flashInferAttn,
bsz_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
bsz_tensors_q = bsz_tensors * self.num_heads
bsz_tensors_kv = bsz_tensors * self.num_key_value_heads
query_states = self.q_norm(self.q_proj(hidden_states, bsz_tensors), bsz_tensors_q)
key_states = self.k_norm(self.k_proj(hidden_states, bsz_tensors), bsz_tensors_kv)
value_states = self.v_proj(hidden_states, bsz_tensors)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_key_value_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_key_value_heads, self.head_dim)
cos, sin = self.rotary_emb(value_states.unsqueeze(0), position_ids.unsqueeze(0))
query_states, key_states = self.apply_rotary_pos_emb(query_states.unsqueeze(0), key_states.unsqueeze(0), cos, sin, unsqueeze_dim=2)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
value_states = value_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
k_cache = kv_cache.get_k_cache(self.layer_idx)
v_cache = kv_cache.get_v_cache(self.layer_idx)
attn_output = wrapper.forward(query_states, k_cache, v_cache, key_states, value_states)
attn_output = self.o_proj(attn_output.view(q_len, self.num_heads * self.head_dim), bsz_tensors)
return attn_output
This diff is collapsed.
import torch
import flashinfer
import gc
try:
from flash_attn import flash_attn_with_kvcache
print("found flash_attn")
except ImportError:
print("flash_attn not found, flashinfer unit test needed it. If you are using balance serve, ignore this.")
from typing import Union, Optional
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
setup_seed(998244353)
torch.set_grad_enabled(False)
torch.set_default_dtype(torch.bfloat16)
global_dtype=torch.bfloat16
global_device=torch.device("cuda",0)
torch.cuda.set_device(0)
torch.backends.cudnn.enabled =True
torch.backends.cudnn.benchmark = True
class flashInferAttn():
float_workspace_buffer = None
def __init__(self,
max_batch_token,
max_batch_size,
max_pages,
device = "cuda:0",
kv_layout: str = "NHD",
use_cuda_graph: bool = False,
) -> None:
self.device = device
self.max_batch_token = max_batch_token
self.kv_layout = kv_layout
self.use_cuda_graph = use_cuda_graph
if flashInferAttn.float_workspace_buffer is None:
flashInferAttn.float_workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.uint8, device=device)
self.qo_indptr_buf = torch.empty((max_batch_size+1,), dtype=torch.int32, device=device)
self.paged_kv_indptr_buf = torch.empty((max_batch_size+1,), dtype=torch.int32, device=device)
self.paged_kv_indices_buf = torch.empty((max_pages,), dtype=torch.int32, device=device)
self.paged_kv_last_page_len_buf = torch.empty((max_batch_size,), dtype=torch.int32, device=device)
self.batch_size_tensor_buf = torch.empty((1,), dtype=torch.int32, device=device)
self.num_tokens_tensor_buf = torch.empty((1,), dtype=torch.uint32, device=device)
# TODO: custom mask
self.custom_mask_buf = None
self.qk_indptr_buf = None
self.warpper = flashinfer.BatchPrefillWithPagedKVCacheWrapper(
flashInferAttn.float_workspace_buffer,
self.kv_layout,
use_cuda_graph=self.use_cuda_graph,
qo_indptr_buf=self.qo_indptr_buf,
paged_kv_indptr_buf=self.paged_kv_indptr_buf,
paged_kv_indices_buf=self.paged_kv_indices_buf,
paged_kv_last_page_len_buf=self.paged_kv_last_page_len_buf,
backend = "fa2",
)
def plan(self,
qo_indptr: torch.Tensor,
paged_kv_indptr: torch.Tensor,
paged_kv_indices: torch.Tensor,
paged_kv_last_page_len: torch.Tensor,
batch_size_tensor: torch.Tensor,
num_tokens_tensor: torch.Tensor,
num_qo_heads: int,
num_kv_heads: int,
head_dim: int,
page_size: int,
causal: bool = True,
pos_encoding_mode: str = "NONE",
q_data_type: Union[str, torch.dtype] = torch.bfloat16,
kv_data_type: Optional[Union[str, torch.dtype]] = None):
self.batch_size_tensor_buf.copy_(batch_size_tensor, non_blocking=True)
self.num_tokens_tensor_buf.copy_(num_tokens_tensor, non_blocking=True)
self.page_size = page_size
self.warpper.plan(
qo_indptr,
paged_kv_indptr,
paged_kv_indices,
paged_kv_last_page_len,
num_qo_heads,
num_kv_heads,
head_dim,
page_size,
causal = causal,
pos_encoding_mode = pos_encoding_mode,
q_data_type = q_data_type,
kv_data_type = kv_data_type
)
def calc_batch_indices(self, ragged_size = None):
if self.use_cuda_graph:
self.batch_indices, self.positions = flashinfer.get_batch_indices_positions(
self.qo_indptr_buf, flashinfer.get_seq_lens(self.paged_kv_indptr_buf, self.paged_kv_last_page_len_buf, self.page_size), self.batch_size_tensor_buf, self.max_batch_token)
else:
self.batch_indices, self.positions = flashinfer.get_batch_indices_positions(
self.warpper._qo_indptr_buf, flashinfer.get_seq_lens(self.warpper._paged_kv_indptr_buf, self.warpper._paged_kv_last_page_len_buf, self.page_size), self.batch_size_tensor_buf, ragged_size)
def forward(self, q, k_cache, v_cache, k, v):
if self.use_cuda_graph:
flashinfer.page.append_paged_kv_cache(k, v, self.batch_indices, self.positions, (k_cache, v_cache), self.paged_kv_indices_buf, self.paged_kv_indptr_buf, self.paged_kv_last_page_len_buf, self.num_tokens_tensor_buf)
return self.warpper.run(q, (k_cache, v_cache))
else:
flashinfer.page.append_paged_kv_cache(k, v, self.batch_indices, self.positions, (k_cache, v_cache), self.warpper._paged_kv_indices_buf, self.warpper._paged_kv_indptr_buf, self.warpper._paged_kv_last_page_len_buf, self.num_tokens_tensor_buf)
return self.warpper.run(q, (k_cache, v_cache))
def testCudaGraph():
# use max batch to create buffer
batch_decode = 8
prefill_chunk = 48
past_kv_0 = 4090
past_kv_1 = 4096
raged_size = prefill_chunk + batch_decode
num_key_value_heads = 8
head_dim = 128
num_attention_heads = 64
page_size = 256
num_pages_per_seq = (past_kv_1 + page_size - 1) // page_size
total_num_pages = (num_pages_per_seq + 1) * (batch_decode + 1) + prefill_chunk // page_size
attn = flashInferAttn(raged_size, batch_decode+1, total_num_pages, use_cuda_graph=True)
batch_size_tensor = torch.tensor([batch_decode + 1], device=global_device, dtype=torch.int32)
k_caches = []
v_caches = []
ks = []
vs = []
qs = []
for layer_idx in range(3):
k_caches.append(torch.randn(total_num_pages, page_size, num_key_value_heads, head_dim, device=global_device, dtype=torch.bfloat16))
v_caches.append(torch.randn(total_num_pages, page_size, num_key_value_heads, head_dim, device=global_device, dtype=torch.bfloat16))
ks.append(torch.randn(raged_size, num_key_value_heads, head_dim, device=global_device, dtype=torch.bfloat16))
vs.append(torch.randn(raged_size, num_key_value_heads, head_dim, device=global_device, dtype=torch.bfloat16))
qs.append(torch.randn(raged_size, num_attention_heads, head_dim, device=global_device, dtype=torch.bfloat16))
# warmup and capture small batch
past_kv_0 = 250
past_kv_1 = 256
num_pages_per_seq = (past_kv_1 + page_size - 1) // page_size
total_num_pages = (num_pages_per_seq + 1) * (batch_decode + 1) + prefill_chunk // page_size
q_indptr = torch.empty((batch_decode + 2,), dtype=torch.int32, device=global_device)
q_indptr[0] = 0
q_indptr[1:] = torch.arange(prefill_chunk, prefill_chunk + batch_decode + 1, device=global_device, dtype=torch.int32)
kv_indptr = torch.arange(0, batch_decode + 2, device=global_device, dtype=torch.int32) * num_pages_per_seq
kv_indices = torch.arange(0, total_num_pages, device=global_device, dtype=torch.int32)
kv_last_page_len = torch.empty((batch_decode + 1,), dtype=torch.int32, device=global_device)
kv_last_page_len[:1+batch_decode//2] = int((past_kv_0 - 1) % page_size + 1)
kv_last_page_len[1+batch_decode//2:] = int((past_kv_1 - 1) % page_size + 1)
print(q_indptr)
print(kv_indptr)
print(kv_indices)
print(kv_last_page_len)
attn.plan(q_indptr,
kv_indptr,
kv_indices,
kv_last_page_len,
batch_size_tensor,
num_attention_heads,
num_key_value_heads,
head_dim,
page_size,
causal = True,
pos_encoding_mode="NONE",
q_data_type=torch.bfloat16)
attn.calc_batch_indices(raged_size)
for layer_idx in range(3):
attn.forward(qs[layer_idx], k_caches[layer_idx], v_caches[layer_idx], ks[layer_idx], vs[layer_idx])
torch.cuda.synchronize()
outs = []
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
for layer_idx in range(3):
outs.append(attn.forward(qs[layer_idx], k_caches[layer_idx], v_caches[layer_idx], ks[layer_idx], vs[layer_idx]))
g.replay()
kv_last_page_len[:1+batch_decode//2] = int(past_kv_0)
kv_last_page_len[1+batch_decode//2:] = int(past_kv_1)
for layer_idx in range(3):
for i in range(batch_decode + 1):
qi = qs[layer_idx][q_indptr[i] : q_indptr[i + 1]]
o_ref_i = flash_attn_with_kvcache(
qi.unsqueeze(0),
k_caches[layer_idx],
v_caches[layer_idx],
causal=True,
block_table=kv_indices[kv_indptr[i]:kv_indptr[i+1]].unsqueeze(0),
cache_seqlens=torch.tensor([past_kv_0 if i < 1+batch_decode//2 else past_kv_1], device=global_device, dtype=torch.int32)
)
o_i = outs[layer_idx][q_indptr[i] : q_indptr[i + 1]]
print(layer_idx, i)
torch.testing.assert_close(o_i.unsqueeze(0), o_ref_i, rtol=5e-3, atol=5e-3)
# run another batch size use capture cuda graph
past_kv_0 = 4090
past_kv_1 = 4096
prefill_chunk = 24
batch_decode = 4
num_pages_per_seq = (past_kv_1 + page_size - 1) // page_size
total_num_pages = (num_pages_per_seq + 1) * (batch_decode + 1) + prefill_chunk // page_size
batch_size_tensor = torch.tensor([batch_decode + 1], device=global_device, dtype=torch.int32)
num_tokens_tensor = torch.tensor([batch_decode + prefill_chunk], device=global_device, dtype=torch.int32)
q_indptr = torch.empty((batch_decode + 2,), dtype=torch.int32, device=global_device)
q_indptr[0] = 0
q_indptr[1:] = torch.arange(prefill_chunk, prefill_chunk + batch_decode + 1, device=global_device, dtype=torch.int32)
kv_indptr = torch.arange(0, batch_decode + 2, device=global_device, dtype=torch.int32) * num_pages_per_seq
kv_indices = torch.arange(0, total_num_pages, device=global_device, dtype=torch.int32)
kv_last_page_len = torch.empty((batch_decode + 1,), dtype=torch.int32, device=global_device)
kv_last_page_len[:1+batch_decode//2] = int((past_kv_0 - 1) % page_size + 1)
kv_last_page_len[1+batch_decode//2:] = int((past_kv_1 - 1) % page_size + 1)
attn.plan(q_indptr,
kv_indptr,
kv_indices,
kv_last_page_len,
batch_size_tensor,
num_attention_heads,
num_key_value_heads,
head_dim,
page_size,
causal = True,
pos_encoding_mode="NONE",
q_data_type=torch.bfloat16)
attn.calc_batch_indices(raged_size)
g.replay()
kv_last_page_len[:1+batch_decode//2] = int(past_kv_0)
kv_last_page_len[1+batch_decode//2:] = int(past_kv_1)
for layer_idx in range(3):
for i in range(batch_decode + 1):
qi = qs[layer_idx][q_indptr[i] : q_indptr[i + 1]]
o_ref_i = flash_attn_with_kvcache(
qi.unsqueeze(0),
k_caches[layer_idx],
v_caches[layer_idx],
causal=True,
block_table=kv_indices[kv_indptr[i]:kv_indptr[i+1]].unsqueeze(0),
cache_seqlens=torch.tensor([past_kv_0 if i < 1+batch_decode//2 else past_kv_1], device=global_device, dtype=torch.int32)
)
o_i = outs[layer_idx][q_indptr[i] : q_indptr[i + 1]]
print(layer_idx, i)
torch.testing.assert_close(o_i.unsqueeze(0), o_ref_i, rtol=5e-3, atol=5e-3)
def testAttentionFlashInfer(
):
batch_decode = 32
prefill_chunk = 64
past_kv_0 = 510
past_kv_1 = 512
raged_size = prefill_chunk + batch_decode
num_key_value_heads = 8
head_dim = 128
num_attention_heads = 64
cases = 1
page_size = 32
num_pages_per_seq = (past_kv_1 + page_size - 1) // page_size
total_num_pages = (num_pages_per_seq + 1) * (batch_decode + 1) + prefill_chunk // page_size
workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.uint8, device="cuda:0")
qs = []
kvs = []
q_indptrs = []
kv_indptrs = []
kv_indicess = []
kv_last_page_lens = []
wrappers = []
for case_id in range(cases):
kvs.append(torch.randn(total_num_pages, 2, page_size, num_key_value_heads, head_dim, device=global_device, dtype=torch.bfloat16))
qs.append(torch.randn(raged_size, num_attention_heads, head_dim, device=global_device, dtype=torch.bfloat16))
q_indptr = torch.empty((batch_decode + 2,), dtype=torch.int32, device=global_device)
q_indptr[0] = 0
q_indptr[1:] = torch.arange(prefill_chunk, prefill_chunk + batch_decode + 1, device=global_device, dtype=torch.int32)
q_indptrs.append(q_indptr)
kv_indptrs.append(torch.arange(0, batch_decode + 2, device=global_device, dtype=torch.int32) * num_pages_per_seq)
kv_indicess.append(torch.arange(0, total_num_pages, device=global_device, dtype=torch.int32))
kv_last_page_len = torch.empty((batch_decode + 1,), dtype=torch.int32, device=global_device)
kv_last_page_len[:1+batch_decode//2] = int((past_kv_0 - 1) % page_size + 1)
kv_last_page_len[1+batch_decode//2:] = int((past_kv_1 - 1) % page_size + 1)
kv_last_page_lens.append(kv_last_page_len)
wrappers.append(flashinfer.BatchPrefillWithPagedKVCacheWrapper(
workspace_buffer,
"NHD",
use_cuda_graph=True,
qo_indptr_buf=q_indptrs[case_id],
paged_kv_indptr_buf=kv_indptrs[case_id],
paged_kv_indices_buf=kv_indicess[case_id],
paged_kv_last_page_len_buf=kv_last_page_lens[case_id],
))
wrappers[case_id].plan(
q_indptrs[case_id],
kv_indptrs[case_id],
kv_indicess[case_id],
kv_last_page_lens[case_id],
num_attention_heads,
num_key_value_heads,
head_dim,
page_size,
causal = True,
pos_encoding_mode="ROPE_LLAMA",
q_data_type=torch.bfloat16
)
def custom_forward(case_id):
out = wrappers[case_id].run(qs[case_id], kvs[case_id])
custom_forward(0)
# testCudaGraph()
# pass
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment