Commit ca7366d2 authored by Azure's avatar Azure
Browse files

Merge remote-tracking branch 'upstream/develop-0.2.2' into support-fp8

parents 581a524f cdb6f896
name: DockerHub CI
on:
release:
types: [published]
# push:
# branches:
# - main
env:
DOCKERHUB_REPO: ${{ secrets.DOCKERHUB_USERNAME }}/ktransformers
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Run tests
run: |
if [ -f docker-compose.test.yml ]; then
docker-compose --file docker-compose.test.yml build
docker-compose --file docker-compose.test.yml run sut
else
docker build . --file Dockerfile
fi
docker_task:
needs: test
name: ${{ matrix.instruct}}
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
include:
# for amd64
- {instruct: "FANCY", platform: "linux/amd64"}
- {instruct: "AVX512", platform: "linux/amd64"}
- {instruct: "AVX2", platform: "linux/amd64"}
- {instruct: "NATIVE", platform: "linux/amd64"}
# for arm64
- {instruct: "NATIVE", platform: "linux/arm64"}
steps:
- name: Move Docker data directory
run: |
sudo systemctl stop docker
sudo mkdir -p /mnt/docker
sudo rsync -avz /var/lib/docker/ /mnt/docker
sudo rm -rf /var/lib/docker
sudo ln -s /mnt/docker /var/lib/docker
sudo systemctl start docker
-
name: Set up QEMU
uses: docker/setup-qemu-action@v3
-
name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
-
name: Login to Docker Hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_TOKEN }}
-
name: Build and push for amd64
if: matrix.platform == 'linux/amd64'
uses: docker/build-push-action@v6
with:
push: true
platforms: |
linux/amd64
tags: |
${{ env.DOCKERHUB_REPO }}:latest-${{ matrix.instruct }}
${{ env.DOCKERHUB_REPO }}:${{ github.event.release.tag_name }}-${{ matrix.instruct }}
build-args: |
CPU_INSTRUCT=${{ matrix.instruct }}
-
name: Build and push for arm64
if: matrix.platform == 'linux/arm64'
uses: docker/build-push-action@v6
with:
push: true
platforms: |
linux/arm64
tags: |
${{ env.DOCKERHUB_REPO }}:latest-${{ matrix.instruct }}
${{ env.DOCKERHUB_REPO }}:${{ github.event.release.tag_name }}-${{ matrix.instruct }}
build-args: |
CPU_INSTRUCT=${{ matrix.instruct }}
\ No newline at end of file
......@@ -28,3 +28,4 @@ ktransformers/tests/chat_txt.txt
mmlu_result_q4km.json
mmlu_result_q4km.log
ktransformers/tests/mmlu_result_silicon.log
ktransformers/ktransformers_ext/cuda_musa/
......@@ -11,6 +11,7 @@ EOF
FROM pytorch/pytorch:2.3.1-cuda12.1-cudnn8-devel as compile_server
ARG CPU_INSTRUCT=NATIVE
WORKDIR /workspace
ENV CUDA_HOME /usr/local/cuda
COPY --from=web_compile /home/ktransformers /workspace/ktransformers
......@@ -28,8 +29,9 @@ git submodule init &&
git submodule update &&
pip install ninja pyproject numpy cpufeature &&
pip install flash-attn &&
CPU_INSTRUCT=NATIVE KTRANSFORMERS_FORCE_BUILD=TRUE TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9;9.0+PTX" pip install . --no-build-isolation --verbose &&
pip cache purge
CPU_INSTRUCT=${CPU_INSTRUCT} KTRANSFORMERS_FORCE_BUILD=TRUE TORCH_CUDA_ARCH_LIST="8.0;8.6;8.7;8.9;9.0+PTX" pip install . --no-build-isolation --verbose &&
pip cache purge &&
cp /usr/lib/x86_64-linux-gnu/libstdc++.so.6 /opt/conda/lib/
EOF
ENTRYPOINT ["tail", "-f", "/dev/null"]
\ No newline at end of file
......@@ -103,7 +103,7 @@ Getting started with KTransformers is simple! Follow the steps below to set up a
### 📥 Installation
To install KTransformers, follow the official [Installation Guide](https://kvcache-ai.github.io/ktransformers/).
To install KTransformers, follow the official [Installation Guide](https://kvcache-ai.github.io/ktransformers/en/install.html).
<h2 id="tutorial">📃 Brief Injection Tutorial</h2>
......
......@@ -81,7 +81,7 @@ Some preparation:
git submodule update
```
- [Optional] If you want to run with website, please [compile the website](./doc/en/api/server/website.md) before execute ```bash install.sh```
- [Optional] If you want to run with website, please [compile the website](./api/server/website.md) before execute ```bash install.sh```
- For Linux
- For simple install:
......@@ -103,7 +103,7 @@ Some preparation:
install.bat
```
* If you are developer, you can make use of the makefile to compile and format the code. <br> the detailed usage of makefile is [here](./doc/en/makefile_usage.md)
* If you are developer, you can make use of the makefile to compile and format the code. <br> the detailed usage of makefile is [here](./makefile_usage.md)
<h3>Local Chat</h3>
We provide a simple command-line local chat Python script that you can run for testing.
......
......@@ -30,6 +30,8 @@ if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" OFF)
endif()
option(LLAMA_AVX512_FANCY_SIMD "llama: enable AVX512-VL, AVX512-BW, AVX512-DQ, AVX512-VNNI" OFF)
option(KTRANSFORMERS_USE_CUDA "ktransformers: use CUDA" OFF)
option(KTRANSFORMERS_USE_MUSA "ktransformers: use MUSA" OFF)
# Architecture specific
# TODO: probably these flags need to be tweaked on some architectures
......@@ -208,8 +210,31 @@ include_directories(${CMAKE_CURRENT_SOURCE_DIR}/../../third_party)
if (WIN32)
include_directories("$ENV{CUDA_PATH}/include")
elseif (UNIX)
find_package(CUDA REQUIRED)
include_directories("${CUDA_INCLUDE_DIRS}")
if (KTRANSFORMERS_USE_CUDA)
find_package(CUDA REQUIRED)
include_directories("${CUDA_INCLUDE_DIRS}")
add_compile_definitions(KTRANSFORMERS_USE_CUDA=1)
endif()
if (KTRANSFORMERS_USE_MUSA)
if (NOT EXISTS $ENV{MUSA_PATH})
if (NOT EXISTS /opt/musa)
set(MUSA_PATH /usr/local/musa)
else()
set(MUSA_PATH /opt/musa)
endif()
else()
set(MUSA_PATH $ENV{MUSA_PATH})
endif()
list(APPEND CMAKE_MODULE_PATH "${MUSA_PATH}/cmake")
find_package(MUSAToolkit)
if (MUSAToolkit_FOUND)
message(STATUS "MUSA Toolkit found")
add_compile_definitions(KTRANSFORMERS_USE_MUSA=1)
endif()
endif()
endif()
aux_source_directory(${CMAKE_CURRENT_SOURCE_DIR} SOURCE_DIR1)
......@@ -225,10 +250,15 @@ target_link_libraries(${PROJECT_NAME} PRIVATE llama)
if(WIN32)
target_link_libraries(${PROJECT_NAME} PRIVATE "$ENV{CUDA_PATH}/lib/x64/cudart.lib")#CUDA::cudart
elseif(UNIX)
if(NOT DEFINED ENV{CUDA_HOME} OR "$ENV{CUDA_HOME}" STREQUAL "")
set(ENV{CUDA_HOME} "/usr/local/cuda")
if(KTRANSFORMERS_USE_CUDA)
if(NOT DEFINED ENV{CUDA_HOME} OR "$ENV{CUDA_HOME}" STREQUAL "")
set(ENV{CUDA_HOME} "/usr/local/cuda")
endif()
target_link_libraries(${PROJECT_NAME} PRIVATE "$ENV{CUDA_HOME}/lib64/libcudart.so")
endif()
if(KTRANSFORMERS_USE_MUSA)
target_link_libraries(${PROJECT_NAME} PRIVATE MUSA::musart)
endif()
target_link_libraries(${PROJECT_NAME} PRIVATE "$ENV{CUDA_HOME}/lib64/libcudart.so")
endif()
# Define the USE_NUMA option
......
......@@ -17,7 +17,11 @@
#include <queue>
#include <thread>
#include <vector>
#include "cuda_runtime.h"
#ifdef KTRANSFORMERS_USE_CUDA
#include "vendors/cuda.h"
#elif KTRANSFORMERS_USE_MUSA
#include "vendors/musa.h"
#endif
#include "backend.h"
#include "task_queue.h"
......
## TODO
This directory can be removed after updating the version of `llama.cpp`.
\ No newline at end of file
#pragma once
#include <cuda_runtime.h>
\ No newline at end of file
#pragma once
#include <musa_runtime.h>
#define cudaLaunchHostFunc musaLaunchHostFunc
#define cudaStream_t musaStream_t
#define cudaHostFn_t musaHostFn_t
\ No newline at end of file
/**
* @Description :
* @Author : Azure-Tang
* @Author : Azure-Tang, Boxin Zhang
* @Date : 2024-07-25 13:38:30
* @Version : 1.0.0
* @LastEditors : kkk1nak0
* @LastEditTime : 2024-08-12 03:05:04
* @Version : 0.2.2
* @Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
**/
#include "custom_gguf/ops.h"
#ifdef KTRANSFORMERS_USE_CUDA
#include "gptq_marlin/ops.h"
#endif
// Python bindings
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
......@@ -19,22 +19,46 @@
// namespace py = pybind11;
PYBIND11_MODULE(KTransformersOps, m) {
m.def("dequantize_q8_0", &dequantize_q8_0, "Function to dequantize q8_0 data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q6_k", &dequantize_q6_k, "Function to dequantize q6_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q5_k", &dequantize_q5_k, "Function to dequantize q5_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q4_k", &dequantize_q4_k, "Function to dequantize q4_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q3_k", &dequantize_q3_k, "Function to dequantize q3_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q2_k", &dequantize_q2_k, "Function to dequantize q2_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_iq4_xs", &dequantize_iq4_xs, "Function to dequantize iq4_xs data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("gptq_marlin_gemm", &gptq_marlin_gemm, "Function to perform GEMM using Marlin quantization.",
py::arg("a"), py::arg("b_q_weight"), py::arg("b_scales"), py::arg("g_idx"),
py::arg("perm"), py::arg("workspace"), py::arg("num_bits"), py::arg("size_m"),
py::arg("size_n"), py::arg("size_k"), py::arg("is_k_full"));
m.def("dequantize_q8_0", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q8_0((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q8_0 data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_q6_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q6_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q6_k data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_q5_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q5_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q5_k data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_q4_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q4_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q4_k data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_q3_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q3_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q3_k data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_q2_k", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_q2_k((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize q2_k data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
m.def("dequantize_iq4_xs", [](const intptr_t data, int num_bytes, int blk_size, const int ele_per_blk, torch::Device device, torch::Dtype target_dtype) {
return dequantize_iq4_xs((int8_t*)data, num_bytes, blk_size, ele_per_blk, device, target_dtype);
}, "Function to dequantize iq4_xs data.",
py::arg("data"), py::arg("num_bytes"), py::arg("blk_size"), py::arg("ele_per_blk"), py::arg("device"), py::arg("target_dtype"));
#ifdef KTRANSFORMERS_USE_CUDA
m.def("gptq_marlin_gemm", &gptq_marlin_gemm, "Function to perform GEMM using Marlin quantization.",
py::arg("a"), py::arg("b_q_weight"), py::arg("b_scales"), py::arg("g_idx"),
py::arg("perm"), py::arg("workspace"), py::arg("num_bits"), py::arg("size_m"),
py::arg("size_n"), py::arg("size_k"), py::arg("is_k_full"));
#endif
}
#include "ops.h"
// Python bindings
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/library.h>
#include <torch/extension.h>
#include <torch/torch.h>
// namespace py = pybind11;
int test(){
return 5;
}
torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device);
PYBIND11_MODULE(cudaops, m) {
m.def("dequantize_q8_0", &dequantize_q8_0, "Function to dequantize q8_0 data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q6_k", &dequantize_q6_k, "Function to dequantize q6_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q5_k", &dequantize_q5_k, "Function to dequantize q5_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q4_k", &dequantize_q4_k, "Function to dequantize q4_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q3_k", &dequantize_q3_k, "Function to dequantize q3_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_q2_k", &dequantize_q2_k, "Function to dequantize q2_k data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("dequantize_iq4_xs", &dequantize_iq4_xs, "Function to dequantize iq4_xs data.",
py::arg("data"), py::arg("blk_size"), py::arg("device"));
m.def("test", &test, "Function to test.");
}
......@@ -2,26 +2,55 @@
* @Description :
* @Author : Azure-Tang, Boxin Zhang
* @Date : 2024-07-25 13:38:30
* @Version : 1.0.0
* @LastEditors : kkk1nak0
* @LastEditTime : 2024-08-12 04:18:04
* @Version : 0.2.2
* Adapted from https://github.com/ggerganov/ggml/blob/fca1caafea7de9fbd7efc733b9818f9cf2da3050/src/ggml-quants.c
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
*/
#include <cuda_runtime.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <torch/library.h>
#include <torch/extension.h>
#include <torch/torch.h>
#include <cstdint>
#include <c10/cuda/CUDAGuard.h>
__global__ void dequantize_q8_0_kernel(float* output, const float* scales, const int8_t* qs, int num_blocks, int blk_size) {
__global__ void dequantize_q8_0_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
for(int i=0;i<blk_size;i++){
float scale = scales[block_id];
output[block_id * blk_size + i] = scale * qs[block_id * blk_size + i];
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
const int8_t* cur_block = data + block_id * blk_size;
float scale = __half2float(*((half*)cur_block));
cur_block += 2;
for (int i = 0; i < ele_per_blk; i++){
output_blk[i] = scale * cur_block[i];
}
}
}
__global__ void dequantize_q8_0_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x) {
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
const int8_t* cur_block = data + block_id * blk_size;
float scale = __half2float(*((half*)cur_block));
cur_block += 2;
for (int i = 0; i < ele_per_blk; i++) {
output_blk[i] = __float2half(scale * cur_block[i]);
}
}
}
__global__ void dequantize_q8_0_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x) {
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
const int8_t* cur_block = data + block_id * blk_size;
float scale = __half2float(*((half*)cur_block));
cur_block += 2;
for (int i = 0; i < ele_per_blk; i++) {
output_blk[i] = __float2bfloat16(scale * cur_block[i]);
}
}
}
......@@ -36,13 +65,13 @@ __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t * __restrict_
}
}
__global__ void dequantize_q2_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
__global__ void dequantize_q2_k_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 80)));
const float min = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 82)));
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 80)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 82)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 16);
......@@ -70,17 +99,85 @@ __global__ void dequantize_q2_k_kernel(int8_t* data, float* output, int blk_size
}
}
__global__ void dequantize_q3_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
__global__ void dequantize_q2_k_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 80)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 82)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 16);
int is = 0;
float dl, ml;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + (is++));
uint8_t sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = __float2half(dl * ((int8_t)((q[l] >> shift) & 3)) - ml);
scales = (uint8_t*)(data + block_id * blk_size + (is++));
sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = __float2half(dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml);
shift += 2;
}
q += 32;
}
}
}
__global__ void dequantize_q2_k_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 80)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 82)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 16);
int is = 0;
float dl, ml;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + (is++));
uint8_t sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = __float2bfloat16(dl * ((int8_t)((q[l] >> shift) & 3)) - ml);
scales = (uint8_t*)(data + block_id * blk_size + (is++));
sc = *scales;
dl = d * (sc & 0xF); ml = min * (sc >> 4);
for (int l = 0; l < 16; ++l) *output_blk++ = __float2bfloat16(dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml);
shift += 2;
}
q += 32;
}
}
}
__global__ void dequantize_q3_k_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
const float d_all = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 108)));
const float d_all = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 108)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 32);
const uint8_t * __restrict__ hm = (uint8_t*)(data + block_id * blk_size + 0);
......@@ -126,19 +223,131 @@ __global__ void dequantize_q3_k_kernel(int8_t* data, float* output, int blk_size
}
}
__global__ void dequantize_q3_k_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
__global__ void dequantize_q4_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
const float d_all = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 108)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 32);
const uint8_t * __restrict__ hm = (uint8_t*)(data + block_id * blk_size + 0);
uint8_t m = 1;
uint8_t* block_scales = (uint8_t*)(data + block_id * blk_size + 96);
for (int i = 0; i < 3; i++) {
aux[i] = 0;
for (int j = 0; j < 4; j++) {
aux[i] |= ((uint32_t)block_scales[i * 4 + j]) << (j * 8);
}
}
uint32_t tmp = aux[2];
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = __float2half(dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = __float2half(dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
__global__ void dequantize_q3_k_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
for (long long block_id=global_idx; block_id<num_blocks; block_id+= blockDim.x * gridDim.x){
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
uint32_t aux[4];
const int8_t * scales = (const int8_t*)aux;
const float d_all = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 108)));
const uint8_t * __restrict__ q = (uint8_t*)(data + block_id * blk_size + 32);
const uint8_t * __restrict__ hm = (uint8_t*)(data + block_id * blk_size + 0);
uint8_t m = 1;
uint8_t* block_scales = (uint8_t*)(data + block_id * blk_size + 96);
for (int i = 0; i < 3; i++) {
aux[i] = 0;
for (int j = 0; j < 4; j++) {
aux[i] |= ((uint32_t)block_scales[i * 4 + j]) << (j * 8);
}
}
uint32_t tmp = aux[2];
aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
int is = 0;
float dl;
for (int n = 0; n < 256; n += 128) {
int shift = 0;
for (int j = 0; j < 4; ++j) {
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = __float2bfloat16(dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)));
}
dl = d_all * (scales[is++] - 32);
for (int l = 0; l < 16; ++l) {
*output_blk++ = __float2bfloat16(dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)));
}
shift += 2;
m <<= 1;
}
q += 32;
}
}
}
__global__ void dequantize_q4_k_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
// const uint8_t * q = data[i].qs;
const uint8_t * q = (uint8_t*)(data + block_id * 144 + 16);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * 144 + 0)));
const float min = __half2float(*(reinterpret_cast<half*>(data + block_id * 144 + 2)));
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 2)));
int is = 0;
uint8_t sc, m;
for (int j = 0; j < blk_size; j += 64) {
for (int j = 0; j < ele_per_blk; j += 64) {
uint8_t* scales = (uint8_t*)(data + block_id * 144 + 4);
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
......@@ -151,13 +360,61 @@ __global__ void dequantize_q4_k_kernel(int8_t* data, float* output, int blk_size
}
}
__global__ void dequantize_q5_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
__global__ void dequantize_q4_k_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x){
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
// const uint8_t * q = data[i].qs;
const uint8_t * q = (uint8_t*)(data + block_id * 144 + 16);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 2)));
int is = 0;
uint8_t sc, m;
for (int j = 0; j < ele_per_blk; j += 64) {
uint8_t* scales = (uint8_t*)(data + block_id * 144 + 4);
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *output_blk++ = __float2half(d1 * (q[l] & 0xF) - m1);
for (int l = 0; l < 32; ++l) *output_blk++ = __float2half(d2 * (q[l] >> 4) - m2);
q += 32; is += 2;
}
}
}
__global__ void dequantize_q4_k_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x){
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
// const uint8_t * q = data[i].qs;
const uint8_t * q = (uint8_t*)(data + block_id * 144 + 16);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * 144 + 2)));
int is = 0;
uint8_t sc, m;
for (int j = 0; j < ele_per_blk; j += 64) {
uint8_t* scales = (uint8_t*)(data + block_id * 144 + 4);
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *output_blk++ = __float2bfloat16(d1 * (q[l] & 0xF) - m1);
for (int l = 0; l < 32; ++l) *output_blk++ = __float2bfloat16(d2 * (q[l] >> 4) - m2);
q += 32; is += 2;
}
}
}
__global__ void dequantize_q5_k_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 0)));
const float min = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 2)));
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 2)));
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 16);
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size + 48);
......@@ -180,46 +437,165 @@ __global__ void dequantize_q5_k_kernel(int8_t* data, float* output, int blk_size
}
}
__global__ void dequantize_q6_k_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
__global__ void dequantize_q5_k_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x){
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 2)));
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 16);
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size + 48);
int is = 0;
uint8_t sc, m;
uint8_t u1 = 1, u2 = 2;
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + 4);
for (int j = 0; j < 256; j += 64) {
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *output_blk++ = __float2half(d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1);
for (int l = 0; l < 32; ++l) *output_blk++ = __float2half(d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2);
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
}
__global__ void dequantize_q5_k_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id = global_idx; block_id < num_blocks; block_id += blockDim.x * gridDim.x){
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 0)));
const float min = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 2)));
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 16);
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size + 48);
int is = 0;
uint8_t sc, m;
uint8_t u1 = 1, u2 = 2;
uint8_t* scales = (uint8_t*)(data + block_id * blk_size + 4);
for (int j = 0; j < 256; j += 64) {
get_scale_min_k4(is + 0, scales, &sc, &m);
const float d1 = d * sc; const float m1 = min * m;
get_scale_min_k4(is + 1, scales, &sc, &m);
const float d2 = d * sc; const float m2 = min * m;
for (int l = 0; l < 32; ++l) *output_blk++ = __float2bfloat16(d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1);
for (int l = 0; l < 32; ++l) *output_blk++ = __float2bfloat16(d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2);
ql += 32; is += 2;
u1 <<= 2; u2 <<= 2;
}
}
}
__global__ void dequantize_q6_k_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
float* __restrict__ output_blk = (float*)(output + block_id * 256);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size + 208)));
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 208)));
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size);
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 128);
const int8_t * __restrict__ sc = (int8_t*)(data + block_id * blk_size + 192);
//if (blk_size == 256){
for (int n = 0; n < blk_size; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
output_blk[l + 0] = d * sc[is + 0] * q1;
output_blk[l + 32] = d * sc[is + 2] * q2;
output_blk[l + 64] = d * sc[is + 4] * q3;
output_blk[l + 96] = d * sc[is + 6] * q4;
}
output_blk += 128;
ql += 64;
qh += 32;
sc += 8;
for (int n = 0; n < ele_per_blk; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
output_blk[l + 0] = d * sc[is + 0] * q1;
output_blk[l + 32] = d * sc[is + 2] * q2;
output_blk[l + 64] = d * sc[is + 4] * q3;
output_blk[l + 96] = d * sc[is + 6] * q4;
}
output_blk += 128;
ql += 64;
qh += 32;
sc += 8;
}
}
}
__global__ void dequantize_q6_k_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 208)));
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size);
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 128);
const int8_t * __restrict__ sc = (int8_t*)(data + block_id * blk_size + 192);
for (int n = 0; n < ele_per_blk; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
output_blk[l + 0] = __float2half(d * sc[is + 0] * q1);
output_blk[l + 32] = __float2half(d * sc[is + 2] * q2);
output_blk[l + 64] = __float2half(d * sc[is + 4] * q3);
output_blk[l + 96] = __float2half(d * sc[is + 6] * q4);
}
output_blk += 128;
ql += 64;
qh += 32;
sc += 8;
}
}
}
__global__ void dequantize_q6_k_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks;block_id+=blockDim.x * gridDim.x){
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size + 208)));
const uint8_t * __restrict__ ql = (uint8_t*)(data + block_id * blk_size);
const uint8_t * __restrict__ qh = (uint8_t*)(data + block_id * blk_size + 128);
const int8_t * __restrict__ sc = (int8_t*)(data + block_id * blk_size + 192);
for (int n = 0; n < ele_per_blk; n += 128) {
for (int l = 0; l < 32; ++l) {
int is = l/16;
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
output_blk[l + 0] = __float2bfloat16(d * sc[is + 0] * q1);
output_blk[l + 32] = __float2bfloat16(d * sc[is + 2] * q2);
output_blk[l + 64] = __float2bfloat16(d * sc[is + 4] * q3);
output_blk[l + 96] = __float2bfloat16(d * sc[is + 6] * q4);
}
output_blk += 128;
ql += 64;
qh += 32;
sc += 8;
}
}
}
static constexpr __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
__global__ void dequantize_iq4_xs_kernel(int8_t* data, float* output, int blk_size, int num_blocks) {
__global__ void dequantize_iq4_xs_fp32_kernel(const int8_t* data, float* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x) {
float* __restrict__ output_blk = (float*)(output + block_id * 256);
const float d = __half2float(*(reinterpret_cast<half*>(data + block_id * blk_size)));
const uint16_t scales_h = *(reinterpret_cast<uint16_t*>(data + block_id * blk_size + 2));
float* __restrict__ output_blk = (float*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size)));
const uint16_t scales_h = *(reinterpret_cast<const uint16_t*>(data + block_id * blk_size + 2));
const uint8_t* scales_l = (uint8_t*)(data + block_id * blk_size + 2 + 2);
const uint8_t* qs = (uint8_t*)(data + block_id * blk_size + 2 + 2 + 4);
......@@ -236,152 +612,267 @@ __global__ void dequantize_iq4_xs_kernel(int8_t* data, float* output, int blk_si
}
}
torch::Tensor dequantize_q8_0(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
__global__ void dequantize_iq4_xs_fp16_kernel(const int8_t* data, __half* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x) {
__half* __restrict__ output_blk = (__half*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size)));
const uint16_t scales_h = *(reinterpret_cast<const uint16_t*>(data + block_id * blk_size + 2));
const uint8_t* scales_l = (uint8_t*)(data + block_id * blk_size + 2 + 2);
const uint8_t* qs = (uint8_t*)(data + block_id * blk_size + 2 + 2 + 4);
for (int ib = 0; ib < 8; ++ib) {
const int ls = ((scales_l[ib / 2] >> 4 * (ib % 2)) & 0xf) | (((scales_h >> 2 * ib) & 3) << 4);
const float dl = d * (ls - 32);
for (int j = 0; j < 16; ++j) {
output_blk[j + 0] = __float2half(dl * kvalues_iq4nl[qs[j] & 0xf]);
output_blk[j + 16] = __float2half(dl * kvalues_iq4nl[qs[j] >> 4]);
}
output_blk += 32;
qs += 16;
}
}
}
__global__ void dequantize_iq4_xs_bf16_kernel(const int8_t* data, nv_bfloat16* output, const int blk_size, const int ele_per_blk, const int num_blocks) {
long long global_idx = blockIdx.x * blockDim.x + threadIdx.x;
for (long long block_id=global_idx; block_id<num_blocks; block_id+=blockDim.x * gridDim.x) {
nv_bfloat16* __restrict__ output_blk = (nv_bfloat16*)(output + block_id * ele_per_blk);
const float d = __half2float(*(reinterpret_cast<const half*>(data + block_id * blk_size)));
const uint16_t scales_h = *(reinterpret_cast<const uint16_t*>(data + block_id * blk_size + 2));
const uint8_t* scales_l = (uint8_t*)(data + block_id * blk_size + 2 + 2);
const uint8_t* qs = (uint8_t*)(data + block_id * blk_size + 2 + 2 + 4);
for (int ib = 0; ib < 8; ++ib) {
const int ls = ((scales_l[ib / 2] >> 4 * (ib % 2)) & 0xf) | (((scales_h >> 2 * ib) & 3) << 4);
const float dl = d * (ls - 32);
for (int j = 0; j < 16; ++j) {
output_blk[j + 0] = __float2bfloat16(dl * kvalues_iq4nl[qs[j] & 0xf]);
output_blk[j + 16] = __float2bfloat16(dl * kvalues_iq4nl[qs[j] >> 4]);
}
output_blk += 32;
qs += 16;
}
}
}
torch::Tensor dequantize_q8_0(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
// create gpu
auto options_scales = torch::TensorOptions().dtype(torch::kFloat32).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto options_qs = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto scales_gpu = torch::empty({{num_blocks, 1}}, options_scales);
auto qs_gpu = torch::empty({num_blocks, 32}, options_qs);
// read on cpu
options_scales = torch::TensorOptions().dtype(torch::kFloat16).device(torch::kCPU);
options_qs = torch::TensorOptions().dtype(torch::kInt8).device(torch::kCPU);
// // reinterpret
auto scales = torch::from_blob(data.data_ptr(), {num_blocks, 1 + 16}, options_scales).slice(1, 0, 1);
auto qs = torch::from_blob(data.data_ptr(), {num_blocks, 2 + 32}, options_qs).slice(1, 2);
auto scales_f32 = scales.to(torch::kFloat32);
scales_gpu.copy_(scales_f32, false);
qs_gpu.copy_(qs, false);
// Create output tensor
auto output = torch::zeros_like(qs, torch::dtype(torch::kFloat32).device(device));
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({ num_bytes }, options);
// Launch kernel
dequantize_q8_0_kernel<<< 512, 256 >>>(
output.data_ptr<float>(), scales_gpu.data_ptr<float>(), qs_gpu.data_ptr<int8_t>(), num_blocks, 32);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({ num_blocks, 32 }, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q8_0_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q8_0_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q8_0_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device device) {
torch::Tensor dequantize_q6_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
// data.numel%blk_size should be 0, else raise err
int num_blocks = data.numel() / blk_size;
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q6_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
// dequantize_q6_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), 256, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q6_k_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q6_k_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q6_k_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
torch::Tensor dequantize_q5_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q5_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q5_k_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q5_k_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q5_k_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device device) {
torch::Tensor dequantize_q4_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
// data.numel%blk_size should be 0, else raise err
int num_blocks = data.numel() / blk_size;
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q4_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), 256, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q4_k_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q4_k_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q4_k_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q3_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
torch::Tensor dequantize_q3_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q3_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q3_k_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q3_k_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q3_k_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
torch::Tensor dequantize_q2_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_q2_k_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_q2_k_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_q2_k_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_q2_k_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
torch::Tensor dequantize_iq4_xs(torch::Tensor data, int blk_size, torch::Device device) {
int num_blocks = data.numel() / blk_size;
torch::Tensor dequantize_iq4_xs(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::Dtype target_dtype) {
int num_blocks = num_bytes / blk_size;
const at::cuda::OptionalCUDAGuard device_guard(device);
auto options = torch::TensorOptions().dtype(torch::kInt8).device(device).memory_format(torch::MemoryFormat::Contiguous);
auto data_gpu = torch::empty({data.numel()}, options);
auto data_gpu = torch::empty({num_bytes}, options);
data_gpu.copy_(data, false);
cudaMemcpy(data_gpu.data_ptr<int8_t>(), data, num_bytes, cudaMemcpyHostToDevice);
//data_gpu.copy_(data, false);
// Create output tensor
auto output = torch::zeros({num_blocks, 256}, torch::dtype(torch::kFloat32).device(device));
// Launch kernel
dequantize_iq4_xs_kernel<<< 512, 256 >>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, num_blocks);
auto output = torch::zeros({num_blocks, 256}, torch::dtype(target_dtype).device(device));
switch (target_dtype) {
case torch::kFloat16:
dequantize_iq4_xs_fp16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (__half*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kBFloat16:
dequantize_iq4_xs_bf16_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), (nv_bfloat16*)output.data_ptr(), blk_size, ele_per_blk, num_blocks);
break;
case torch::kFloat32:
dequantize_iq4_xs_fp32_kernel<<<512, 256>>>(data_gpu.data_ptr<int8_t>(), output.data_ptr<float>(), blk_size, ele_per_blk, num_blocks);
break;
default:
printf("target type not support\n");
exit(0);
}
cudaDeviceSynchronize();
return output;
}
......@@ -13,10 +13,10 @@
#include <torch/extension.h>
#include <torch/torch.h>
torch::Tensor dequantize_q8_0(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q6_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q5_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q4_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q3_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q2_k(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_iq4_xs(torch::Tensor data, int blk_size, torch::Device device);
torch::Tensor dequantize_q8_0(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_q6_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_q5_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_q4_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_q3_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_q2_k(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
torch::Tensor dequantize_iq4_xs(const int8_t* data, const int num_bytes, const int blk_size, const int ele_per_blk, const torch::Device device, const torch::ScalarType target_dtype);
import os
import sys
sys.path.insert(0,"/home/zbx/ktransformers")
from ktransformers.util.custom_gguf import GGUFLoader
import torch
gguf_loader_1 = GGUFLoader("/mnt/data/model/DeepseekV3-q4km-gguf")
gguf_loader_2 = GGUFLoader("/mnt/data/chenht/model/gguf_for_ktransformers/DeepSeek-V3-bf16/")
torch.set_default_dtype(torch.bfloat16)
tensor_1 = gguf_loader_1.load_gguf_tensor("blk.0.attn_kv_a_mqa.weight", "cuda")
tensor_2 = gguf_loader_2.load_gguf_tensor("blk.0.attn_kv_a_mqa.weight", "cuda")
print(tensor_1[0, -64:])
print(tensor_2[0, -64:])
\ No newline at end of file
......@@ -90,7 +90,7 @@ def marlin_quantize(
assert group_size <= size_k
# Quantize (and apply act_order if provided)
w_ref, q_w, s, g_idx, rand_perm = quantize_weights(w, num_bits, group_size,
q_w, s, g_idx, rand_perm = quantize_weights(w, num_bits, group_size,
act_order)
# For act_order, sort the "weights" and "g_idx" so that group ids are
......@@ -107,7 +107,7 @@ def marlin_quantize(
marlin_scale_perm_single[num_bits])
# Create result
res_list = [w_ref, marlin_q_w, marlin_s, g_idx, sort_indices, rand_perm]
res_list = [marlin_q_w, marlin_s, g_idx, sort_indices, rand_perm]
for i in range(len(res_list)):
res_list[i] = res_list[i].to(w.device)
......
......@@ -11,8 +11,7 @@ def get_pack_factor(num_bits):
return 32 // num_bits
def permute_rows(q_w: torch.Tensor, w_ref: torch.Tensor, group_size: int):
assert q_w.shape == w_ref.shape
def permute_rows(q_w: torch.Tensor, group_size: int):
orig_device = q_w.device
k_size, _ = q_w.shape
......@@ -26,10 +25,8 @@ def permute_rows(q_w: torch.Tensor, w_ref: torch.Tensor, group_size: int):
g_idx = g_idx[rand_perm].contiguous()
q_w = q_w[rand_perm, :].contiguous()
w_ref = w_ref[rand_perm, :].contiguous()
return (
w_ref.to(device=orig_device),
q_w.to(device=orig_device),
g_idx.to(device=orig_device),
rand_perm.to(device=orig_device),
......@@ -69,9 +66,6 @@ def quantize_weights(w: torch.Tensor, num_bits: int, group_size: int,
q_w += half_q_val
q_w = torch.clamp(q_w, 0, max_q_val)
# Compute ref (dequantized)
w_ref = (q_w - half_q_val).half() * s
# Restore original shapes
if group_size < size_k:
......@@ -82,7 +76,6 @@ def quantize_weights(w: torch.Tensor, num_bits: int, group_size: int,
return w
q_w = reshape_w(q_w)
w_ref = reshape_w(w_ref)
s = s.reshape((-1, size_n)).contiguous()
......@@ -95,10 +88,9 @@ def quantize_weights(w: torch.Tensor, num_bits: int, group_size: int,
), "For act_order, groupsize = {} must be less than size_k = {}".format(
group_size, size_k)
w_ref, q_w, g_idx, rand_perm = permute_rows(q_w, w_ref, group_size)
q_w, g_idx, rand_perm = permute_rows(q_w, group_size)
return (
w_ref.to(device=orig_device),
q_w.to(device=orig_device),
s.to(device=orig_device),
g_idx.to(device=orig_device),
......
......@@ -168,10 +168,7 @@ def local_chat(
if mode == 'long_context':
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
torch.set_default_dtype(
torch.bfloat16
) # TODO: Remove this, replace dtype using config
if system != "Windows" and (config.architectures[0] == "DeepseekV2ForCausalLM" or "DeepseekV3ForCausalLM") and flashinfer_enabled:
generated = prefill_and_generate(
model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode = mode, force_think = force_think,
......
......@@ -1742,8 +1742,7 @@ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits[:,-1,:].unsqueeze(0).float()
logits = self.lm_head(hidden_states[:,-1:,:]).float()
loss = None
if labels is not None:
......
......@@ -1699,7 +1699,7 @@ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states.to(self.lm_head.weight.device))
logits = self.lm_head(hidden_states[:,-1:,:])
logits = logits.float()
loss = None
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment