Unverified Commit 7527619f authored by UnicornChan's avatar UnicornChan Committed by GitHub
Browse files

Merge pull request #122 from kvcache-ai/feat-DeepSeekV3

[Feat] add support to DeepSeekV3
parents f4903d54 6f0fe953
......@@ -142,11 +142,11 @@ jobs:
- name: Setup Mamba
if: matrix.cuda != ''
uses: conda-incubator/setup-miniconda@v2.3.0
uses: conda-incubator/setup-miniconda@v3
with:
activate-environment: "ktransformers"
python-version: ${{ matrix.pyver }}
miniforge-variant: Mambaforge
miniforge-variant: Miniforge3
miniforge-version: latest
use-mamba: true
add-pip-as-python-dependency: true
......
......@@ -54,11 +54,11 @@ jobs:
- name: Setup Mamba
if: matrix.cuda != ''
uses: conda-incubator/setup-miniconda@v2.3.0
uses: conda-incubator/setup-miniconda@v3
with:
activate-environment: "ktransformers"
python-version: ${{ matrix.pyver }}
miniforge-variant: Mambaforge
miniforge-variant: Miniforge3
miniforge-version: latest
use-mamba: true
add-pip-as-python-dependency: true
......
......@@ -18,4 +18,7 @@ compile_commands.json
ktransformers/server/local_store/
ktransformers/server_test1.db
*.patch
img/
\ No newline at end of file
img/
tmp1.txt
test_65_300_1536.txt
test.txt
......@@ -17,5 +17,5 @@ dev_install:
pip install -r requirements-local_chat.txt
echo "Installing ktransformers"
KTRANSFORMERS_FORCE_BUILD=TRUE pip install -e . --no-build-isolation
KTRANSFORMERS_FORCE_BUILD=TRUE pip install -e . -v --no-build-isolation
echo "Installation completed successfully"
\ No newline at end of file
......@@ -23,6 +23,7 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Fed 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~64x speedup. The detailed tutorial is [here](./doc/en/DeepseekR1_V3_tutorial.md)
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./doc/en/long_context_tutorial.md).
* **Aug 28, 2024**: Decrease DeepseekV2's required VRAM from 21G to 11G.
* **Aug 15, 2024**: Update detailed [TUTORIAL](doc/en/injection_tutorial.md) for injection and multi-GPU.
......@@ -30,54 +31,68 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
* **Aug 12, 2024**: Support multiple GPU; Support new model: mixtral 8\*7B and 8\*22B; Support q2k, q3k, q5k dequant on gpu.
* **Aug 9, 2024**: Support windows native.
<h2 id="show-cases">🔥 Show Cases</h2>
<h3>1M Context Local Inference on a Desktop with Only 24GB VRAM</h3>
<p align="center">
<h2 id="show-cases">🌟 Show Cases</h2>
https://github.com/user-attachments/assets/a865e5e4-bca3-401e-94b8-af3c080e6c12
<div>
<h3>GPT-4/o1-level Local VSCode Copilot on a Desktop with only 24GB VRAM</h3>
</div>
* **1M Context InternLM 2.5 7B**: Operates at full bf16 precision, utilizing 24GB VRAM and 150GB DRAM, which is feasible on a local desktop setup. It achieves a 92.88% success rate on the 1M "Needle In a Haystack" test and 100% on the 128K NIAH test.
https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
<p align="center">
<picture>
<img alt="Single Needle Retrieval 128K" src="./doc/assets/needle_128K.png" width=100%>
</picture>
</p>
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM.
- Prefill Speed (tokens/s):
- KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only)
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**.
- Decode Speed (tokens/s):
- KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only)
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.
- Upcoming Open Source Release:
- AMX optimizations and selective expert activation will be open-sourced in V0.3.
- Currently available only in preview binary distribution, which can be downloaded [here](https://github.com/kvcache-ai/ktransformers/releases/download/v0.1.4/ktransformers-0.3.0rc0+cu126torch26fancy-cp311-cp311-linux_x86_64.whl).
- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 21GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).
<p align="center">
<picture>
<img alt="Single Needle Retrieval 1000K" src="./doc/assets/needle_1M.png" width=100%>
<img alt="DeepSeek-Coder-V2 Score" src="https://github.com/user-attachments/assets/d052924e-8631-44de-aad2-97c54b965693" width=100%>
</picture>
</p>
* **Enhanced Speed**: Reaches 16.91 tokens/s for generation with a 1M context using sparse attention, powered by llamafile kernels. This method is over 10 times faster than full attention approach of llama.cpp.
* **Flexible Sparse Attention Framework**: Offers a flexible block sparse attention framework for CPU offloaded decoding. Compatible with SnapKV, Quest, and InfLLm. Further information is available [here](./doc/en/long_context_introduction.md).
- **Faster Speed:** Achieving 126 tokens/s for 2K prompt prefill and 13.6 tokens/s for generation through MoE offloading and injecting advanced kernels from [Llamafile](https://github.com/Mozilla-Ocho/llamafile/tree/main) and [Marlin](https://github.com/IST-DASLab/marlin).
- **VSCode Integration:** Wrapped into an OpenAI and Ollama compatible API for seamless integration as a backend for [Tabby](https://github.com/TabbyML/tabby) and various other frontends.
<div>
<h3>GPT-4-level Local VSCode Copilot on a Desktop with only 24GB VRAM</h3>
</div>
<p align="center">
https://github.com/user-attachments/assets/0b9fa2da-66f0-48eb-b4b9-f0e1f06f8927
https://github.com/user-attachments/assets/4c6a8a38-05aa-497d-8eb1-3a5b3918429c
</p>
- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 21GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).
<h3>1M Context Local Inference on a Desktop with Only 24GB VRAM</h3>
<p align="center">
https://github.com/user-attachments/assets/a865e5e4-bca3-401e-94b8-af3c080e6c12
* **1M Context InternLM 2.5 7B**: Operates at full bf16 precision, utilizing 24GB VRAM and 150GB DRAM, which is feasible on a local desktop setup. It achieves a 92.88% success rate on the 1M "Needle In a Haystack" test and 100% on the 128K NIAH test.
<p align="center">
<picture>
<img alt="DeepSeek-Coder-V2 Score" src="https://github.com/user-attachments/assets/d052924e-8631-44de-aad2-97c54b965693" width=100%>
<img alt="Single Needle Retrieval 128K" src="./doc/assets/needle_128K.png" width=100%>
</picture>
</p>
- **Faster Speed:** Achieving 126 tokens/s for 2K prompt prefill and 13.6 tokens/s for generation through MoE offloading and injecting advanced kernels from [Llamafile](https://github.com/Mozilla-Ocho/llamafile/tree/main) and [Marlin](https://github.com/IST-DASLab/marlin).
- **VSCode Integration:** Wrapped into an OpenAI and Ollama compatible API for seamless integration as a backend for [Tabby](https://github.com/TabbyML/tabby) and various other frontends.
<p align="center">
<picture>
<img alt="Single Needle Retrieval 1000K" src="./doc/assets/needle_1M.png" width=100%>
</picture>
</p>
* **Enhanced Speed**: Reaches 16.91 tokens/s for generation with a 1M context using sparse attention, powered by llamafile kernels. This method is over 10 times faster than full attention approach of llama.cpp.
* **Flexible Sparse Attention Framework**: Offers a flexible block sparse attention framework for CPU offloaded decoding. Compatible with SnapKV, Quest, and InfLLm. Further information is available [here](./doc/en/long_context_introduction.md).
https://github.com/user-attachments/assets/4c6a8a38-05aa-497d-8eb1-3a5b3918429c
</p>
<strong>More advanced features will coming soon, so stay tuned!</strong>
......
# GPT-4/o1-level Local VSCode Copilot on a Desktop with only 24GB VRAM
# SUMMARY
> **Fed 10, 2025**: Support DeepseekR1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~64x speedup.<br>
Hi, we're the KTransformers team (formerly known for our local CPU/GPU hybrid inference open source project with DeepSeek-V2).
We've heard your requests for DeepSeek-R1/V3 support—and we're excited to finally deliver!
Apologies for the wait, but we've been cooking up something truly amazing!
Today, we're proud to announce that we not only support DeepSeek-R1/V3, as showcased in the video below:
https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
</p>
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM.
- Prefill Speed (tokens/s):
- KTransfermor: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only)
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **63.53× speedup**.
- Decode Speed (tokens/s):
- KTransfermor: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only)
- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.
We also give our upcoming optimizations previews, including an Intel AMX-accelerated kernel and a selective expert activation method, which will significantly enhance performance. With V0.3-preview, we achieve up to 286 tokens/s for prefill, making it up to **64× faster than llama.cpp** for local inference.
The binary distribution is available now and the source code will come ASAP! Check out the wheel package [here](https://github.com/kvcache-ai/ktransformers/releases/download/v0.1.4/ktransformers-0.3.0rc0+cu126torch26fancy-cp311-cp311-linux_x86_64.whl)
## Prerequisites
We run our best performance tests (V0.2) on <br>
CPU: Intel (R) Xeon (R) Gold 6454S 1T DRAM (2 NUMA nodes) <br>
GPU: 4090D 24G VRAM <br>
## Bench Result
### V0.2
#### Settings
- Model: DeepseekV3-q4km (int4)<br>
- CPU: cpu_model_name: Intel (R) Xeon (R) Gold 6454S, 32 cores per socket, 2 sockets, 2 numa nodes
- GPU: 4090D 24G VRAM
- We test after enough warm up
#### Memory consumption:
- Single socket: 382G DRAM, at least 14GB VRAM
- Dual socket: 1T DRAM, at least 14GB VRAM
#### Benchmark Results
"6 experts" case is part of V0.3's preview
| Prompt<br>(500 tokens) | Dual socket Ktrans (6 experts) | Dual socket Ktrans (8 experts) | Single socket Ktrans (6 experts) | Single socket Ktrans (8 experts)| llama.cpp (8 experts) |
| --- | --- | --- | --- | --- | --- |
| Prefill token/s | 97.32 | 82.94 | 65.14 | 54.21 | 10.31 |
| Decode token/s | 13.69 | 12.208 | 10.303 | 8.73 |4.51 |
**The highest speedup reaches up to <u>3.03x</u> in decoding and <u>9.44x</u> in prefill.**
### V0.3-Preview
#### Settings
- Model: DeepseekV3-BF16 (online quant into int8 for CPU and int4 for GPU)
- CPU: cpu_model_name: Intel (R) Xeon (R) Gold 6454S, 32 cores per socket, 2 socket, 2 numa nodes
- GPU: (1~4)x 4090D 24GVRAM (requires more VRAM for longer prompt)
#### Memory consumptions:
- 644GB DRAM, at least 14GB VRAM
#### Benchmark results
| Prompt length | 1K | 2K | 4K | 8K |
|---------------|-----|-----|-----|-----|
| KTrans (8 experts) Prefill token/s | 185.96 | 255.26 | 252.58 | 195.62 |
| KTrans (6 experts) Prefill token/s | 203.70 | 286.55 | 271.08 | 207.20 |
**The prefill of KTrans V0.3 is up to <u>3.45x</u> times faster than KTrans V0.2, and is up to <u>63.53x</u> times faster than llama.cpp.**
**The decoding speed is the same as KTrans V0.2 (6 experts version) so it is omitted**
The main acceleration comes from
- Intel AMX instruction set and our specially designed cache friendly memory layout
- Expert selection strategy that selects fewer experts based on offline profile results of out of domain data
*From our research on DeepSeekV2, DeepSeekV3 and DeepSeekR1,
when we slightly decrease the activation experts num in inference,
the output quality doesn't change. But the speed of decoding and prefill
is speed up which is inspiring. So our showcase makes use of this finding*
## How to Run
### V0.2 Showcase
#### Single socket version (32 cores)
Our local_chat test command is:
``` shell
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
numactl -N 1 -m 1 python ./ktransformers/local_chat.py --model_path <your model path> --gguf_path <your gguf path> --prompt_file <your prompt txt file> --cpu_infer 33 --cache_lens 1536
<when you see chat, then press enter to load the text prompt_file>
```
\<your model path\> can be local or set from online hugging face like deepseek-ai/DeepSeek-V3. If online encounters connection problem, try use mirror (hf-mirror.com) <br>
\<your gguf path\> can also be online, but as its large we recommend you download it and quantize the model to what you want <br>
The command numactl -N 1 -m 1 aims to advoid data transfer between numa nodes
#### Dual socket version (64 cores)
Make suer before you install (use install.sh or `make dev_install`), setting the env var `USE_NUMA=1` by `export USE_NUMA=1` (if already installed, reinstall it with this env var set) <br>
Our local_chat test command is:
``` shell
git clone https://github.com/kvcache-ai/ktransformers.git
cd ktransformers
export USE_NUMA=1
make dev_install # or sh ./install.sh
python ./ktransformers/local_chat.py --model_path <your model path> --gguf_path <your gguf path> --prompt_file <your prompt txt file> --cpu_infer 65 --cache_lens 1536
<when you see chat, then press enter to load the text prompt_file>
```
The parameters' meaning is the same. But As we use dual socket, we set cpu_infer to 65
### V0.3 Showcase
#### Dual socket version (64 cores)
Our local_chat test command is:
``` shell
wget https://github.com/kvcache-ai/ktransformers/releases/download/v0.1.4/ktransformers-0.3.0rc0+cu126torch26fancy-cp311-cp311-linux_x86_64.whl
pip install ./ktransformers-0.3.0rc0+cu126torch26fancy-cp311-cp311-linux_x86_64.whl
python -m ktransformers.local_chat --model_path <your model path> --gguf_path <your gguf path> --prompt_file <your prompt txt file> --cpu_infer 65 --cache_lens 1536
<when you see chat, then press enter to load the text prompt_file>
```
The parameters' meaning is the same with V0.2. But As we use dual socket, we set cpu_infer to 65
## Some Explanations
1. Also we want to make further use of our two NUMA nodes on Xeon Gold cpu.
To avoid the cost of data transfer between nodes, we "copy" the critical matrix on
both nodes which takes more memory consumption but accelerates the prefill and decoding process.
But this method takes huge memory and slow when loading weights, So be patient when loading
and monitor the memory usage. We are going to optimize this huge memory overhead. Stay tuned~ <br>
2. The command args `--cpu_infer 65` specifies how many cores to use (it's ok that it exceeds the physical number,
but it's not the more the better. Adjust it slightly lower to your actual number of cores)<br>
3. Why CPU/GPU Hybrid Inference?
DeepSeek's MLA operators are highly computationally intensive. While running everything on CPU is possible, offloading the heavy computations to the GPU results in a massive performance boost.
4. Where Does the Speedup Come From?
- Expert Offload: Unlike traditional layer-based or KVCache offloading (as seen in llama.cpp), we offload the expert computation to the CPU and MLA/KVCache to GPU, aligning perfectly with DeepSeek’s architecture for optimal efficiency.
- Intel AMX Optimization – Our AMX-accelerated kernel is meticulously tuned, running several times faster than existing llama.cpp implementations. We plan to open-source this kernel after cleansing and are considering upstream contributions to llama.cpp.
5. Why Intel CPUs?
Intel is currently the only CPU vendor that supports AMX-like instructions, which delivers significantly better performance compared to AVX-only alternatives.
\ No newline at end of file
......@@ -5,7 +5,7 @@ Description :
Author : kkk1nak0
Date : 2024-08-15 07:34:46
Version : 1.0.0
LastEditors : Azure-Tang
LastEditTime : 2024-08-29 22:35:51
LastEditors : unicornchan
LastEditTime : 2025-02-10 00:59:53
'''
__version__ = "0.1.4"
\ No newline at end of file
__version__ = "0.2.0"
\ No newline at end of file
......@@ -54,4 +54,4 @@ long_context:
token_step:
local_chat:
prompt_file: "./ktransformers/p.txt"
\ No newline at end of file
prompt_file: ""
\ No newline at end of file
......@@ -230,3 +230,24 @@ elseif(UNIX)
endif()
target_link_libraries(${PROJECT_NAME} PRIVATE "$ENV{CUDA_HOME}/lib64/libcudart.so")
endif()
# Define the USE_NUMA option
option(USE_NUMA "Disable NUMA support" OFF)
# Check if the USE_NUMA environment variable is set
if(DEFINED ENV{USE_NUMA})
set(USE_NUMA ON)
endif()
if (USE_NUMA)
message(STATUS "NUMA support is enabled")
else()
message(STATUS "NUMA support is disabled")
endif()
find_library(NUMA_LIBRARY NAMES numa)
if (NUMA_LIBRARY AND USE_NUMA)
message(STATUS "NUMA library found: ${NUMA_LIBRARY} - enabling NUMA support")
target_link_libraries(${PROJECT_NAME} PRIVATE ${NUMA_LIBRARY})
target_compile_definitions(${PROJECT_NAME} PRIVATE USE_NUMA)
else()
message(STATUS "NUMA library not found or user not set USE_NUMA - disabling NUMA support")
endif()
......@@ -10,6 +10,13 @@
#include "backend.h"
#ifdef USE_NUMA
#include <numa.h>
#include <numaif.h>
thread_local int Backend::numa_node = -1;
#endif
thread_local int Backend::thread_local_id = -1;
Backend::Backend(int max_thread_num) {
......@@ -74,6 +81,16 @@ void Backend::do_work_stealing_job(int task_num,
}
void Backend::process_tasks(int thread_id) {
#ifdef USE_NUMA
if(numa_node == -1){
numa_node = thread_id * numa_num_configured_nodes() / thread_num_;
struct bitmask* mask = numa_bitmask_alloc(numa_num_configured_nodes());
numa_bitmask_setbit(mask, numa_node);
numa_bind(mask);
}
#endif
if (init_func_ != nullptr) {
init_func_(thread_id);
}
......
......@@ -38,6 +38,9 @@ class Backend {
void do_work_stealing_job(int, std::function<void(int)>,
std::function<void(int)>,
std::function<void(int)>);
#ifdef USE_NUMA
static thread_local int numa_node;
#endif
static thread_local int thread_local_id;
private:
......
......@@ -11,11 +11,41 @@
#include <iostream>
#include <cstdint>
#ifdef USE_NUMA
#include <numa.h>
#include <numaif.h>
#endif
MOE::MOE(MOEConfig config) {
config_ = config;
gate_proj_ = config_.gate_proj;
up_proj_ = config_.up_proj;
down_proj_ = config_.down_proj;
#ifdef USE_NUMA
int numa_nodes = numa_num_configured_nodes();
gate_proj_numa_.resize(numa_nodes);
up_proj_numa_.resize(numa_nodes);
down_proj_numa_.resize(numa_nodes);
size_t exp_inter_hidden_mul_ = (size_t)config.expert_num * config.intermediate_size * config.hidden_size;
for (int i = 0; i < numa_nodes; i++) {
gate_proj_numa_[i] = numa_alloc_onnode(exp_inter_hidden_mul_* ggml_type_size(config.gate_type) / ggml_blck_size(config.gate_type), i);
up_proj_numa_[i] = numa_alloc_onnode(exp_inter_hidden_mul_* ggml_type_size(config.up_type) / ggml_blck_size(config.up_type), i);
down_proj_numa_[i] = numa_alloc_onnode(exp_inter_hidden_mul_* ggml_type_size(config.down_type) / ggml_blck_size(config.down_type), i);
if (!gate_proj_numa_[i]) {
std::cout << "Memory allocation failed for gate_proj_numa_ on node " << i << std::endl;
}
if (!up_proj_numa_[i]) {
std::cout << "Memory allocation failed for up_proj_numa_ on node " << i << std::endl;
}
if (!down_proj_numa_[i]) {
std::cout << "Memory allocation failed for down_proj_numa_ on node " << i << std::endl;
}
memcpy(gate_proj_numa_[i], gate_proj_, exp_inter_hidden_mul_* ggml_type_size(config.gate_type) / ggml_blck_size(config.gate_type));
memcpy(up_proj_numa_[i], up_proj_, exp_inter_hidden_mul_* ggml_type_size(config.up_type) / ggml_blck_size(config.up_type));
memcpy(down_proj_numa_[i], down_proj_, exp_inter_hidden_mul_* ggml_type_size(config.down_type) / ggml_blck_size(config.down_type));
}
#endif
std::vector<std::pair<void**, uint64_t>> s_mem_requests;
s_mem_requests.push_back({(void**)&s_input_fp32_, sizeof(float) * config_.hidden_size});
......@@ -74,6 +104,15 @@ MOE::MOE(MOEConfig config) {
MOE::~MOE() {
shared_mem_buffer.dealloc(this);
#ifdef USE_NUMA
int numa_nodes = numa_num_configured_nodes();
for (int i = 0; i < numa_nodes; i++) {
numa_free(gate_proj_numa_[i], config_.expert_num * config_.intermediate_size * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type));
numa_free(up_proj_numa_[i], config_.expert_num * config_.intermediate_size * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type));
numa_free(down_proj_numa_[i], config_.expert_num * config_.hidden_size * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type));
}
#endif
}
void MOE::warm_up(Backend* backend) {
......@@ -125,10 +164,22 @@ void MOE::forward_one(int k, const uint64_t* expert_ids, const float* weights, c
int expert_idx = task_id / nth;
uint64_t expert_id = expert_ids[expert_idx];
int ith = task_id % nth;
#ifdef USE_NUMA
void* gate_proj_ptr = (uint8_t*)gate_proj_numa_[Backend::numa_node] + (expert_id * config_.intermediate_size + ith * config_.stride) * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type);
#else
void* gate_proj_ptr = (uint8_t*)gate_proj_ + (expert_id * config_.intermediate_size + ith * config_.stride) * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type);
#endif
float* gate_output_ptr = s_gate_output_[expert_idx] + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_proj_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_input_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.gate_type, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
#ifdef USE_NUMA
void* up_proj_ptr = (uint8_t*)up_proj_numa_[Backend::numa_node] + (expert_id * config_.intermediate_size + ith * config_.stride) * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type);
#else
void* up_proj_ptr = (uint8_t*)up_proj_ + (expert_id * config_.intermediate_size + ith * config_.stride) * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type);
#endif
float* up_output_ptr = s_up_output_[expert_idx] + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.hidden_size / ggml_blck_size(config_.up_type), up_proj_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_input_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.up_type, ggml_internal_get_type_traits(config_.up_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
for (int i = ith * config_.stride; i < (ith + 1) * config_.stride; i++) {
......@@ -153,7 +204,13 @@ void MOE::forward_one(int k, const uint64_t* expert_ids, const float* weights, c
}
for (int expert_idx = 0; expert_idx < k; expert_idx++) {
uint64_t expert_id = expert_ids[expert_idx];
#ifdef USE_NUMA
void* down_proj_ptr = (uint8_t*)down_proj_numa_[Backend::numa_node] + (expert_id * config_.hidden_size + ith * config_.stride) * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type);
#else
void* down_proj_ptr = (uint8_t*)down_proj_ + (expert_id * config_.hidden_size + ith * config_.stride) * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type);
#endif
float* down_output_ptr = s_down_output_[expert_idx] + ith * config_.stride;
llamafile_sgemm(config_.stride, 1, config_.intermediate_size / ggml_blck_size(config_.down_type), down_proj_ptr, config_.intermediate_size / ggml_blck_size(config_.down_type), s_down_input_[expert_idx], config_.intermediate_size / ggml_blck_size(config_.down_type), down_output_ptr, config_.stride, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.down_type, ggml_internal_get_type_traits(config_.down_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
for (int i = ith * config_.stride; i < (ith + 1) * config_.stride; i++) {
......@@ -224,14 +281,26 @@ void MOE::forward_many(int qlen, int k, const uint64_t* expert_ids, const float*
int stride = QK_K;
int nth = config_.intermediate_size / stride;
backend->do_work_stealing_job(nth * config_.expert_num, nullptr, [&](int task_id) {
int expert_idx = task_id / nth;
uint64_t expert_idx = task_id / nth;
int ith = task_id % nth;
void* gate_input_ptr = m_local_gate_input_ptr_[expert_idx];
#ifdef USE_NUMA
void* gate_proj_ptr = (uint8_t*)gate_proj_numa_[Backend::numa_node] + (expert_idx * config_.intermediate_size + ith * stride) * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type);
#else
void* gate_proj_ptr = (uint8_t*)gate_proj_ + (expert_idx * config_.intermediate_size + ith * stride) * config_.hidden_size * ggml_type_size(config_.gate_type) / ggml_blck_size(config_.gate_type);
#endif
float* gate_output_ptr = m_local_gate_output_ptr_[expert_idx] + ith * stride;
llamafile_sgemm(stride, m_local_num_[expert_idx], config_.hidden_size / ggml_blck_size(config_.gate_type), gate_proj_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_input_ptr, config_.hidden_size / ggml_blck_size(config_.gate_type), gate_output_ptr, config_.intermediate_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.gate_type, ggml_internal_get_type_traits(config_.gate_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
void* up_input_ptr = m_local_up_input_ptr_[expert_idx];
#ifdef USE_NUMA
void* up_proj_ptr = (uint8_t*)up_proj_numa_[Backend::numa_node] + (expert_idx * config_.intermediate_size + ith * stride) * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type);
#else
void* up_proj_ptr = (uint8_t*)up_proj_ + (expert_idx * config_.intermediate_size + ith * stride) * config_.hidden_size * ggml_type_size(config_.up_type) / ggml_blck_size(config_.up_type);
#endif
float* up_output_ptr = m_local_up_output_ptr_[expert_idx] + ith * stride;
llamafile_sgemm(stride, m_local_num_[expert_idx], config_.hidden_size / ggml_blck_size(config_.up_type), up_proj_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_input_ptr, config_.hidden_size / ggml_blck_size(config_.up_type), up_output_ptr, config_.intermediate_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.up_type, ggml_internal_get_type_traits(config_.up_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
for (int i = 0; i < m_local_num_[expert_idx]; i++) {
......@@ -246,10 +315,16 @@ void MOE::forward_many(int qlen, int k, const uint64_t* expert_ids, const float*
stride = QK_K;
nth = config_.hidden_size / stride;
backend->do_work_stealing_job(nth * config_.expert_num, nullptr, [&](int task_id) {
int expert_idx = task_id / nth;
uint64_t expert_idx = task_id / nth;
int ith = task_id % nth;
void* down_input_ptr = m_local_down_input_ptr_[expert_idx];
#ifdef USE_NUMA
void* down_proj_ptr = (uint8_t*)down_proj_numa_[Backend::numa_node] + (expert_idx * config_.hidden_size + ith * stride) * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type);
#else
void* down_proj_ptr = (uint8_t*)down_proj_ + (expert_idx * config_.hidden_size + ith * stride) * config_.intermediate_size * ggml_type_size(config_.down_type) / ggml_blck_size(config_.down_type);
#endif
float* down_output_ptr = m_local_down_output_ptr_[expert_idx] + ith * stride;
llamafile_sgemm(stride, m_local_num_[expert_idx], config_.intermediate_size / ggml_blck_size(config_.down_type), down_proj_ptr, config_.intermediate_size / ggml_blck_size(config_.down_type), down_input_ptr, config_.intermediate_size / ggml_blck_size(config_.down_type), down_output_ptr, config_.hidden_size, 0, 1, GGML_TASK_TYPE_COMPUTE, config_.down_type, ggml_internal_get_type_traits(config_.down_type).vec_dot_type, GGML_TYPE_F32, GGML_PREC_DEFAULT);
}, nullptr);
......
......@@ -61,6 +61,12 @@ class MOE {
void* up_proj_; // [expert_num * intermediate_size * hidden_size ( /32 if quantized)]
void* down_proj_; // [expert_num * hidden_size * intermediate_size ( /32 if quantized)]
#ifdef USE_NUMA
std::vector<void*> gate_proj_numa_; // [numa_num, expert_num * intermediate_size * hidden_size ( /32 if quantized)]
std::vector<void*> up_proj_numa_; // [numa_num, expert_num * intermediate_size * hidden_size ( /32 if quantized)]
std::vector<void*> down_proj_numa_; // [numa_num, expert_num * hidden_size * intermediate_size ( /32 if quantized)]
#endif
float* s_input_fp32_; // [hidden_size]
uint8_t* s_gate_input_; // [hidden_size * ggml_type_size(ggml_internal_get_type_traits(gate_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(gate_type).vec_dot_type)]
uint8_t* s_up_input_; // [hidden_size * ggml_type_size(ggml_internal_get_type_traits(up_type).vec_dot_type) / ggml_blck_size(ggml_internal_get_type_traits(up_type).vec_dot_type)]
......
# """
# Description :
# Author : Boxin Zhang, Azure-Tang
# Version : 0.1.0
# Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
# """
# import asyncio
# import os
# import platform
# import sys
# project_dir = os.path.dirname(os.path.dirname(__file__))
# sys.path.insert(0, project_dir)
# from ktransformers.server.args import ArgumentParser
# from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM
# from ktransformers.models.modeling_deepseek_v3 import DeepseekV3ForCausalLM
# from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM
# from ktransformers.models.modeling_llama import LlamaForCausalLM
# from ktransformers.models.modeling_mixtral import MixtralForCausalLM
# from ktransformers.server.config.config import Config
# custom_models = {
# "DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
# "DeepseekV3ForCausalLM": DeepseekV3ForCausalLM,
# "Qwen2MoeForCausalLM": Qwen2MoeForCausalLM,
# "LlamaForCausalLM": LlamaForCausalLM,
# "MixtralForCausalLM": MixtralForCausalLM,
# }
# ktransformer_rules_dir = os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/"
# default_optimize_rules = {
# "DeepseekV2ForCausalLM": ktransformer_rules_dir + "DeepSeek-V2-Chat.yaml",
# "DeepseekV3ForCausalLM": ktransformer_rules_dir + "DeepSeek-V3-Chat.yaml",
# "Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct.yaml",
# "LlamaForCausalLM": ktransformer_rules_dir + "Internlm2_5-7b-Chat-1m.yaml",
# "MixtralForCausalLM": ktransformer_rules_dir + "Mixtral.yaml",
# }
# def local_chat():
# config = Config()
# arg_parser = ArgumentParser(config)
# # 初始化消息
# arg_parser.parse_args()
# if config.backend_type == "transformers":
# from ktransformers.server.backend.interfaces.transformers import TransformersInterface as BackendInterface
# elif config.backend_type == "exllamav2":
# from ktransformers.server.backend.interfaces.exllamav2 import ExllamaInterface as BackendInterface
# elif config.backend_type == "ktransformers":
# from ktransformers.server.backend.interfaces.ktransformers import KTransformersInterface as BackendInterface
# else:
# raise NotImplementedError(f"{config.backend_type} not implemented")
# interface = BackendInterface(config)
# system = platform.system()
# if system == "Windows":
# os.system("cls")
# else:
# os.system("clear")
# # add a history chat content
# his_content = []
# while True:
# content = input("Chat: ")
# if content.startswith('"""'): # prefix """
# # multi lines input
# content = content[3:] + "\n"
# while True:
# line = input("")
# if line.endswith('"""'):
# # end multi lines input
# line = line[:-3] # suffix """
# if line:
# content += line + "\n"
# break
# else:
# content += line + "\n"
# if content == "":
# if not config.prompt_file:
# content = "hi"
# else:
# content = open(config.prompt_file, "r").read()
# print("User: ", content)
# elif os.path.isfile(content):
# content = open(content, "r").read()
# print("User: ", content)
# messages = his_content + [{"role": "user", "content": content}]
# async def async_inference(messages):
# generated = ""
# async for token in interface.inference(messages, "local_chat"):
# generated += token
# return generated
# generated = asyncio.run(async_inference(messages))
# his_content += [
# {"role": "user", "content": content},
# {"role": "assistant", "content": generated},
# ]
# if __name__ == "__main__":
# local_chat()
"""
Description :
Description :
Author : Boxin Zhang, Azure-Tang
Version : 0.1.0
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
"""
import asyncio
import os
import platform
import sys
project_dir = os.path.dirname(os.path.dirname(__file__))
sys.path.insert(0, project_dir)
from ktransformers.server.args import ArgumentParser
import torch
import logging
from transformers import (
AutoTokenizer,
AutoConfig,
AutoModelForCausalLM,
GenerationConfig,
TextStreamer,
)
import json
import fire
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.modeling_deepseek import DeepseekV2ForCausalLM
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeForCausalLM
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3ForCausalLM
from ktransformers.models.modeling_llama import LlamaForCausalLM
from ktransformers.models.modeling_mixtral import MixtralForCausalLM
from ktransformers.util.utils import prefill_and_generate
from ktransformers.server.config.config import Config
custom_models = {
"DeepseekV2ForCausalLM": DeepseekV2ForCausalLM,
"DeepseekV3ForCausalLM": DeepseekV3ForCausalLM,
"Qwen2MoeForCausalLM": Qwen2MoeForCausalLM,
"LlamaForCausalLM": LlamaForCausalLM,
"MixtralForCausalLM": MixtralForCausalLM,
}
ktransformer_rules_dir = os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/"
ktransformer_rules_dir = (
os.path.dirname(os.path.abspath(__file__)) + "/optimize/optimize_rules/"
)
default_optimize_rules = {
"DeepseekV2ForCausalLM": ktransformer_rules_dir + "DeepSeek-V2-Chat.yaml",
"DeepseekV3ForCausalLM": ktransformer_rules_dir + "DeepSeek-V3-Chat.yaml",
"Qwen2MoeForCausalLM": ktransformer_rules_dir + "Qwen2-57B-A14B-Instruct.yaml",
"LlamaForCausalLM": ktransformer_rules_dir + "Internlm2_5-7b-Chat-1m.yaml",
"MixtralForCausalLM": ktransformer_rules_dir + "Mixtral.yaml",
}
def local_chat():
config = Config()
arg_parser = ArgumentParser(config)
# 初始化消息
arg_parser.parse_args()
if config.backend_type == "transformers":
from ktransformers.server.backend.interfaces.transformers import TransformersInterface as BackendInterface
elif config.backend_type == "exllamav2":
from ktransformers.server.backend.interfaces.exllamav2 import ExllamaInterface as BackendInterface
elif config.backend_type == "ktransformers":
from ktransformers.server.backend.interfaces.ktransformers import KTransformersInterface as BackendInterface
def local_chat(
model_path: str | None = None,
optimize_rule_path: str = None,
gguf_path: str | None = None,
max_new_tokens: int = 1000,
cpu_infer: int = Config().cpu_infer,
use_cuda_graph: bool = True,
prompt_file : str | None = None,
mode: str = "normal",
):
torch.set_grad_enabled(False)
Config().cpu_infer = cpu_infer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if mode == 'long_context':
assert config.architectures[0] == "LlamaForCausalLM", "only LlamaForCausalLM support long_context mode"
torch.set_default_dtype(torch.float16)
else:
raise NotImplementedError(f"{config.backend_type} not implemented")
interface = BackendInterface(config)
torch.set_default_dtype(config.torch_dtype)
with torch.device("meta"):
if config.architectures[0] in custom_models:
print("using custom modeling_xxx.py.")
if (
"Qwen2Moe" in config.architectures[0]
): # Qwen2Moe must use flash_attention_2 to avoid overflow.
config._attn_implementation = "flash_attention_2"
if "Llama" in config.architectures[0]:
config._attn_implementation = "eager"
if "Mixtral" in config.architectures[0]:
config._attn_implementation = "flash_attention_2"
model = custom_models[config.architectures[0]](config)
else:
model = AutoModelForCausalLM.from_config(
config, trust_remote_code=True, attn_implementation="flash_attention_2"
)
if optimize_rule_path is None:
if config.architectures[0] in default_optimize_rules:
print("using default_optimize_rule for", config.architectures[0])
optimize_rule_path = default_optimize_rules[config.architectures[0]]
else:
optimize_rule_path = input(
"please input the path of your rule file(yaml file containing optimize rules):"
)
if gguf_path is None:
gguf_path = input(
"please input the path of your gguf file(gguf file in the dir containing input gguf file must all belong to current model):"
)
optimize_and_load_gguf(model, optimize_rule_path, gguf_path, config)
try:
model.generation_config = GenerationConfig.from_pretrained(model_path)
except:
gen_config = GenerationConfig(
max_length=128,
temperature=0.7,
top_p=0.9,
do_sample=True
)
model.generation_config = gen_config
# model.generation_config = GenerationConfig.from_pretrained(model_path)
if model.generation_config.pad_token_id is None:
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.eval()
logging.basicConfig(level=logging.INFO)
system = platform.system()
if system == "Windows":
os.system("cls")
else:
os.system("clear")
# add a history chat content
his_content = []
while True:
content = input("Chat: ")
if content.startswith('"""'): # prefix """
......@@ -73,27 +251,28 @@ def local_chat():
break
else:
content += line + "\n"
if content == "":
if config.prompt_file == None or config.prompt_file == "":
content = "Please write a piece of quicksort code in C++."
if prompt_file != None:
content = open(prompt_file, "r").read()
else:
content = open(config.prompt_file, "r").read()
content = "Please write a piece of quicksort code in C++."
elif os.path.isfile(content):
content = open(content, "r").read()
messages = his_content + [{"role": "user", "content": content}]
async def async_inference(messages):
generated = ""
async for token in interface.inference(messages, "local_chat"):
generated += token
return generated
generated = asyncio.run(async_inference(messages))
his_content += [
{"role": "user", "content": content},
{"role": "assistant", "content": generated},
]
messages = [{"role": "user", "content": content}]
input_tensor = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
)
if mode == 'long_context':
assert Config().long_context_config['max_seq_len'] > input_tensor.shape[1] + max_new_tokens, \
"please change max_seq_len in ~/.ktransformers/config.yaml"
torch.set_default_dtype(
torch.bfloat16
) # TODO: Remove this, replace dtype using config
generated = prefill_and_generate(
model, tokenizer, input_tensor.cuda(), max_new_tokens, use_cuda_graph, mode
)
if __name__ == "__main__":
local_chat()
fire.Fire(local_chat)
\ No newline at end of file
# coding=utf-8
# Copyright 2025 bzantium and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on the DeepSeekV3 implementations from the DeepSeek AI team. (https://huggingface.co/deepseek-ai/DeepSeek-V3)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DeepSeekV3 model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
class DeepseekV3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DeepSeek-V3.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 129280):
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DeepseekV3Model`]
hidden_size (`int`, *optional*, defaults to 7168):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 18432):
Dimension of the MLP representations.
moe_intermediate_size (`int`, *optional*, defaults to 2048):
Dimension of the MoE representations.
num_hidden_layers (`int`, *optional*, defaults to 61):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 128):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 128):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
n_shared_experts (`int`, *optional*, defaults to 1):
Number of shared experts.
n_routed_experts (`int`, *optional*, defaults to 256):
Number of routed experts.
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
Scaling factor or routed experts.
kv_lora_rank (`int`, *optional*, defaults to 512):
Rank of the LoRA matrices for key and value projections.
q_lora_rank (`int`, *optional*, defaults to 1536):
Rank of the LoRA matrices for query projections.
qk_rope_head_dim (`int`, *optional*, defaults to 64):
Dimension of the query/key heads that use rotary position embeddings.
v_head_dim (`int`, *optional*, defaults to 128):
Dimension of the value heads.
qk_nope_head_dim (`int`, *optional*, defaults to 128):
Dimension of the query/key heads that don't use rotary position embeddings.
n_group (`int`, *optional*, defaults to 8):
Number of groups for routed experts.
topk_group (`int`, *optional*, defaults to 4):
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts, None means dense model.
first_k_dense_replace (`int`, *optional*, defaults to 3):
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
\--k dense layers--/
norm_topk_prob (`bool`, *optional*, defaults to `True`):
Whether to normalize the weights of the routed experts.
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
Auxiliary loss weight coefficient.
Whether to compute the auxiliary loss for each individual sample.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import DeepseekV3Model, DeepseekV3Config
>>> # Initializing a Deepseek-V3 style configuration
>>> configuration = DeepseekV3Config()
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deepseek_v3"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `DeepseekV3Model`
base_model_tp_plan = {
"layers.*.gate_proj": "colwise",
"layers.*.up_proj": "colwise",
"layers.*.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=129280,
hidden_size=7168,
intermediate_size=18432,
moe_intermediate_size=2048,
num_hidden_layers=61,
num_attention_heads=128,
num_key_value_heads=128,
n_shared_experts=1,
n_routed_experts=256,
routed_scaling_factor=2.5,
kv_lora_rank=512,
q_lora_rank=1536,
qk_rope_head_dim=64,
v_head_dim=128,
qk_nope_head_dim=128,
n_group=8,
topk_group=4,
num_experts_per_tok=8,
first_k_dense_replace=3,
norm_topk_prob=True,
aux_loss_alpha=0.001,
hidden_act="silu",
max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=0,
eos_token_id=1,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.moe_intermediate_size = moe_intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_shared_experts = n_shared_experts
self.n_routed_experts = n_routed_experts
self.routed_scaling_factor = routed_scaling_factor
self.kv_lora_rank = kv_lora_rank
self.q_lora_rank = q_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.v_head_dim = v_head_dim
self.qk_nope_head_dim = qk_nope_head_dim
self.q_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.head_dim = qk_rope_head_dim
self.n_group = n_group
self.topk_group = topk_group
self.num_experts_per_tok = num_experts_per_tok
self.first_k_dense_replace = first_k_dense_replace
self.norm_topk_prob = norm_topk_prob
self.aux_loss_alpha = aux_loss_alpha
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["DeepseekV3Config"]
\ No newline at end of file
......@@ -34,9 +34,12 @@ class StaticCache(transformers.StaticCache):
self.max_batch_size = max_batch_size
self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
if config.architectures[0] == "DeepseekV3ForCausalLM":
self.head_dim = config.qk_rope_head_dim
else:
self.head_dim = (
config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
)
self.dtype = dtype if dtype is not None else torch.float32
self.num_key_value_heads = (
......@@ -46,7 +49,7 @@ class StaticCache(transformers.StaticCache):
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
if config.architectures[0] == "DeepseekV2ForCausalLM":
if config.architectures[0] == "DeepseekV2ForCausalLM" or config.architectures[0] == "DeepseekV3ForCausalLM":
# TODO: for deepseek, cache_shape is different whether using Absorbed MLA, check it automatically
# key_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, config.qk_rope_head_dim + config.qk_nope_head_dim)
# value_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, config.v_head_dim)
......@@ -132,3 +135,7 @@ class StaticCache(transformers.StaticCache):
# In-place ops prevent breaking the static address
self.key_cache[layer_idx].zero_()
self.value_cache[layer_idx].zero_()
def get_max_cache_shape(self) -> Tuple[int, int, int, int]:
"""Returns the maximum shape of the cache."""
return self.max_cache_len
\ No newline at end of file
# coding=utf-8
# Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DeepSeek model."""
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import (
AttentionMaskConverter,
_prepare_4d_attention_mask,
_prepare_4d_causal_attention_mask,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import (
ALL_LAYERNORM_LAYERS,
is_torch_greater_or_equal_than_1_13,
)
from transformers.utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from transformers.utils.import_utils import is_torch_fx_available
from .configuration_deepseek_v3 import DeepseekV3Config
import torch.distributed as dist
import numpy as np
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
# It means that the function will not be traced through and simply appear as a node in the graph.
if is_torch_fx_available():
if not is_torch_greater_or_equal_than_1_13:
import torch.fx
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DeepseekV3Config"
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
)
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DeepseekV3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
DeepseekV3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
class DeepseekV3RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
self.max_seq_len_cached = None
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(t, self.inv_freq.to(t.device))
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
t = t / self.scaling_factor
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
"""DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings)
- (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (
base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
# Inverse dim formula to find dim based on number of rotations
def yarn_find_correction_dim(
num_rotations, dim, base=10000, max_position_embeddings=2048
):
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
2 * math.log(base)
)
# Find dim range bounds based on rotations
def yarn_find_correction_range(
low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
):
low = math.floor(
yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
)
high = math.ceil(
yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
)
return max(low, 0), min(high, dim - 1) # Clamp values just in case
def yarn_get_mscale(scale=1, mscale=1):
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
def yarn_linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
def __init__(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
original_max_position_embeddings=4096,
beta_fast=32,
beta_slow=1,
mscale=1,
mscale_all_dim=0,
):
self.scaling_factor = scaling_factor
self.original_max_position_embeddings = original_max_position_embeddings
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.mscale_all_dim = mscale_all_dim
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
dim = self.dim
freq_extra = 1.0 / (
self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
freq_inter = 1.0 / (
self.scaling_factor
* self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
low, high = yarn_find_correction_range(
self.beta_fast,
self.beta_slow,
dim,
self.base,
self.original_max_position_embeddings,
)
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
device=device, dtype=torch.float32
)
inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
_mscale = float(
yarn_get_mscale(self.scaling_factor, self.mscale)
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer(
"cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
)
self.register_buffer(
"sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
b, h, s, d = q.shape
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
b, h, s, d = k.shape
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class DeepseekV3MLP(nn.Module):
def __init__(self, config, hidden_size=None, intermediate_size=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
self.intermediate_size = (
config.intermediate_size if intermediate_size is None else intermediate_size
)
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class MoEGate(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
self.routed_scaling_factor = config.routed_scaling_factor
self.scoring_func = config.scoring_func
self.seq_aux = config.seq_aux
self.topk_method = config.topk_method
self.n_group = config.n_group
self.topk_group = config.topk_group
# topk selection algorithm
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.hidden_size
self.weight = nn.Parameter(
torch.empty((self.n_routed_experts, self.gating_dim))
)
if self.topk_method == "noaux_tc":
self.e_score_correction_bias = nn.Parameter(
torch.empty((self.n_routed_experts))
)
self.reset_parameters()
def reset_parameters(self) -> None:
import torch.nn.init as init
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(
hidden_states.type(torch.float32), self.weight.type(torch.float32), None
)
if self.scoring_func == "sigmoid":
scores = logits.sigmoid()
else:
raise NotImplementedError(
f"insupportable scoring function for MoE gating: {self.scoring_func}"
)
### select top-k experts
if self.topk_method == "noaux_tc":
scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
group_scores = (
scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
) # [n, n_group]
group_idx = torch.topk(
group_scores, k=self.topk_group, dim=-1, sorted=False
)[
1
] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = (
group_mask.unsqueeze(-1)
.expand(
bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
)
.reshape(bsz * seq_len, -1)
) # [n, e]
tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
_, topk_idx = torch.topk(
tmp_scores, k=self.top_k, dim=-1, sorted=False
)
topk_weight = scores.gather(1, topk_idx)
else:
raise NotImplementedError(
f"insupportable TopK function for MoE gating: {self.topk_method}"
)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
return topk_idx, topk_weight
class DeepseekV3MoE(nn.Module):
"""
A mixed expert module containing shared experts.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.num_experts_per_tok = config.num_experts_per_tok
if hasattr(config, "ep_size") and config.ep_size > 1:
assert config.ep_size == dist.get_world_size()
self.ep_size = config.ep_size
self.experts_per_rank = config.n_routed_experts // config.ep_size
self.ep_rank = dist.get_rank()
self.experts = nn.ModuleList(
[
(
DeepseekV3MLP(
config, intermediate_size=config.moe_intermediate_size
)
if i >= self.ep_rank * self.experts_per_rank
and i < (self.ep_rank + 1) * self.experts_per_rank
else None
)
for i in range(config.n_routed_experts)
]
)
else:
self.ep_size = 1
self.experts_per_rank = config.n_routed_experts
self.ep_rank = 0
self.experts = nn.ModuleList(
[
DeepseekV3MLP(
config, intermediate_size=config.moe_intermediate_size
)
for i in range(config.n_routed_experts)
]
)
self.gate = MoEGate(config)
if config.n_shared_experts is not None:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV3MLP(
config=config, intermediate_size=intermediate_size
)
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if not self.training:
y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, topk_ids, topk_weight):
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
sorted_tokens_shape = sorted_tokens.shape
if self.ep_size > 1:
tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
tokens_per_expert_group = tokens_per_expert.new_empty(
tokens_per_expert.shape[0]
)
dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
output_splits = (
tokens_per_expert_group.view(self.ep_size, -1)
.sum(1)
.cpu()
.numpy()
.tolist()
)
gathered_tokens = sorted_tokens.new_empty(
tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
)
input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
dist.all_to_all(
list(gathered_tokens.split(output_splits)),
list(sorted_tokens.split(input_split_sizes)),
)
tokens_per_expert_post_gather = tokens_per_expert_group.view(
self.ep_size, self.experts_per_rank
).sum(dim=0)
gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
s = 0
for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
gatherd_idxs[s : s + k] = i % self.experts_per_rank
s += k
gatherd_idxs = gatherd_idxs.argsort()
sorted_tokens = gathered_tokens[gatherd_idxs]
tokens_per_expert = tokens_per_expert_post_gather
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
if self.ep_size > 1:
new_x = torch.empty_like(outs)
new_x[gatherd_idxs] = outs
gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
dist.all_to_all(
list(gathered_tokens.split(input_split_sizes)),
list(new_x.split(output_splits)),
)
outs = gathered_tokens
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
class DeepseekV3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.q_lora_rank = config.q_lora_rank
self.qk_rope_head_dim = config.qk_rope_head_dim
self.kv_lora_rank = config.kv_lora_rank
self.v_head_dim = config.v_head_dim
self.qk_nope_head_dim = config.qk_nope_head_dim
self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
self.is_causal = True
if self.q_lora_rank is None:
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.q_head_dim, bias=False
)
else:
self.q_a_proj = nn.Linear(
self.hidden_size, config.q_lora_rank, bias=config.attention_bias
)
self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
self.q_b_proj = nn.Linear(
config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
)
self.kv_a_proj_with_mqa = nn.Linear(
self.hidden_size,
config.kv_lora_rank + config.qk_rope_head_dim,
bias=config.attention_bias,
)
self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
self.kv_b_proj = nn.Linear(
config.kv_lora_rank,
self.num_heads
* (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
bias=False,
)
self.o_proj = nn.Linear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=config.attention_bias,
)
self._init_rope()
self.softmax_scale = self.q_head_dim ** (-0.5)
if self.config.rope_scaling is not None:
mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
scaling_factor = self.config.rope_scaling["factor"]
if mscale_all_dim:
mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
self.softmax_scale = self.softmax_scale * mscale * mscale
def _init_rope(self):
if self.config.rope_scaling is None:
self.rotary_emb = DeepseekV3RotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
else:
scaling_type = self.config.rope_scaling["type"]
scaling_factor = self.config.rope_scaling["factor"]
if scaling_type == "linear":
self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "dynamic":
self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
)
elif scaling_type == "yarn":
kwargs = {
key: self.config.rope_scaling[key]
for key in [
"original_max_position_embeddings",
"beta_fast",
"beta_slow",
"mscale",
"mscale_all_dim",
]
if key in self.config.rope_scaling
}
self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
self.qk_rope_head_dim,
max_position_embeddings=self.max_position_embeddings,
scaling_factor=scaling_factor,
base=self.rope_theta,
**kwargs,
)
else:
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv = (
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
.transpose(1, 2)
)
k_nope, value_states = torch.split(
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
)
kv_seq_len = value_states.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
attn_weights = (
torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
assert attention_mask is not None
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
class DeepseekV3FlashAttention2(DeepseekV3Attention):
"""
DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# DeepseekV3FlashAttention2 attention does not support output_attentions
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
# overwrite attention_mask with padding_mask
attention_mask = kwargs.pop("padding_mask")
output_attentions = False
bsz, q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv = (
self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
.view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
.transpose(1, 2)
)
k_nope, value_states = torch.split(
kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
)
kv_seq_len = value_states.shape[-2]
kv_seq_len = value_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
if self.q_head_dim != self.v_head_dim:
value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, cache_kwargs
)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (DeepseekV3RMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
# Handle the case where the model is quantized
if hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
elif torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
else:
target_dtype = (
self.q_proj.weight.dtype
if self.q_lora_rank is None
else self.q_a_proj.weight.dtype
)
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
softmax_scale=self.softmax_scale,
)
if self.q_head_dim != self.v_head_dim:
attn_output = attn_output[:, :, :, : self.v_head_dim]
attn_output = attn_output.reshape(
bsz, q_len, self.num_heads * self.v_head_dim
).contiguous()
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
def _flash_attention_forward(
self,
query_states,
key_states,
value_states,
attention_mask,
query_length,
dropout=0.0,
softmax_scale=None,
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
(
query_states,
key_states,
value_states,
indices_q,
cu_seq_lens,
max_seq_lens,
) = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(
attn_output_unpad, indices_q, batch_size, query_length
)
else:
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
dropout,
softmax_scale=softmax_scale,
causal=causal,
)
return attn_output
def _upad_input(
self, query_layer, key_layer, value_layer, attention_mask, query_length
):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
indices_k,
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
indices_k,
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
query_layer, attention_mask
)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
ATTENTION_CLASSES = {
"eager": DeepseekV3Attention,
"flash_attention_2": DeepseekV3FlashAttention2,
}
class DeepseekV3DecoderLayer(nn.Module):
def __init__(self, config: DeepseekV3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
)
self.mlp = (
DeepseekV3MoE(config)
if (
config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0
)
else DeepseekV3MLP(config)
)
self.input_layernorm = DeepseekV3RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.post_attention_layernorm = DeepseekV3RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
"""
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
DeepseekV3_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DeepseekV3Config`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3PreTrainedModel(PreTrainedModel):
config_class = DeepseekV3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["DeepseekV3DecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_cache_class = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
DeepseekV3_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance;
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3Model(DeepseekV3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
Args:
config: DeepseekV3Config
"""
def __init__(self, config: DeepseekV3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx
)
self.layers = nn.ModuleList(
[
DeepseekV3DecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)
]
)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = (
attention_mask
if (attention_mask is not None and 0 in attention_mask)
else None
)
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask,
(batch_size, seq_length),
inputs_embeds,
past_key_values_length,
)
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = (
next_decoder_cache.to_legacy_cache()
if use_legacy_cache
else next_decoder_cache
)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeepseekV3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
>>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values is not None:
if isinstance(past_key_values, Cache):
cache_length = past_key_values.get_seq_length()
past_length = past_key_values.seen_tokens
max_cache_length = past_key_values.get_max_length()
else:
cache_length = past_length = past_key_values[0][0].shape[2]
max_cache_length = None
# Keep only the unprocessed tokens:
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
# input)
if (
attention_mask is not None
and attention_mask.shape[1] > input_ids.shape[1]
):
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx.to(past_state.device))
for past_state in layer_past
),
)
return reordered_past
@add_start_docstrings(
"""
The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
[`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
DeepseekV3_START_DOCSTRING,
)
class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = DeepseekV3Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError(
"Cannot handle batch sizes > 1 if no padding token is defined."
)
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
\ No newline at end of file
......@@ -12,15 +12,21 @@ from ktransformers.models.modeling_llama import (
LlamaLinearScalingRotaryEmbedding,
LlamaDynamicNTKScalingRotaryEmbedding,
)
from ktransformers.models.modeling_deepseek_v3 import (
DeepseekV3RotaryEmbedding
)
from ktransformers.models.modeling_deepseek import (
DeepseekV2YarnRotaryEmbedding,
DeepseekV2RotaryEmbedding,
yarn_get_mscale,
yarn_linear_ramp_mask,
yarn_find_correction_range
)
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.utils import InferenceState
from transformers.configuration_utils import PretrainedConfig
import torch
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2Moe
class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
......@@ -53,6 +59,57 @@ class RotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
)
class RotaryEmbeddingV3(BaseInjectedModule):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.generate_device = generate_device
self.prefill_device = prefill_device
@torch.no_grad()
def forward(self, x, position_ids):
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def load(self):
self._init(
dim=self.config.qk_rope_head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
device=self.device,
)
def _init(self, dim, max_position_embeddings, base, device, scaling_factor=1.0):
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
# self.register_buffer("inv_freq", inv_freq, persistent=False)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
class RotaryEmbeddingV2(BaseInjectedModule, LlamaRotaryEmbedding):
def __init__(
self,
......@@ -134,6 +191,137 @@ class YarnRotaryEmbedding(BaseInjectedModule, DeepseekV2YarnRotaryEmbedding):
self.orig_module.mscale_all_dim,
)
# class DeepSeekV3YarnRotaryEmbedding(BaseInjectedModule, DeepseekV3RotaryEmbedding):
# def __init__(
# self,
# key: str,
# gguf_loader: GGUFLoader,
# config: PretrainedConfig,
# orig_module: nn.Module,
# # device: str = "cuda",
# generate_device: str = "cuda",
# prefill_device: str = "cuda",
# **kwargs,
# ):
# BaseInjectedModule.__init__(
# self, key, gguf_loader, config, orig_module, generate_device, **kwargs
# )
# self.generate_device = generate_device
# self.prefill_device = prefill_device
# def load(self):
# # TODO support perlayer prefill
# self.orig_module.__init__(
# self.config,
# device=self.generate_device
# )
# return
class YarnRotaryEmbeddingV3(BaseInjectedModule):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, generate_device, **kwargs
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
kwargs = {
key: self.config.rope_scaling[key]
for key in [
"original_max_position_embeddings",
"beta_fast",
"beta_slow",
"mscale",
"mscale_all_dim",
]
if key in self.config.rope_scaling
}
self._init(
dim=self.config.qk_rope_head_dim,
max_position_embeddings=self.config.max_position_embeddings,
base=self.config.rope_theta,
device=self.device,
scaling_factor=self.config.rope_scaling["factor"],
**kwargs,
)
@torch.no_grad()
def forward(self, x, position_ids):
# x: [bs, num_attention_heads, seq_len, head_size]
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()* self._mscale
sin = emb.sin()* self._mscale
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def _init(
self,
dim,
max_position_embeddings=2048,
base=10000,
device=None,
scaling_factor=1.0,
original_max_position_embeddings=4096,
beta_fast=32,
beta_slow=1,
mscale=1,
mscale_all_dim=0,
):
self.original_max_position_embeddings = original_max_position_embeddings
self.beta_fast = beta_fast
self.beta_slow = beta_slow
self.mscale = mscale
self.mscale_all_dim = mscale_all_dim
self.scaling_factor = scaling_factor
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
freq_extra = 1.0 / (
self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
freq_inter = 1.0 / (
self.scaling_factor
* self.base
** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
)
low, high = yarn_find_correction_range(
self.beta_fast,
self.beta_slow,
dim,
self.base,
self.original_max_position_embeddings,
)
inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
device=device, dtype=torch.float32
)
self.inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
self._mscale = float(
yarn_get_mscale(self.scaling_factor, self.mscale)
/ yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
class DynamicNTKScalingRotaryEmbedding(
BaseInjectedModule, LlamaDynamicNTKScalingRotaryEmbedding
......
......@@ -13,6 +13,8 @@ from ktransformers.models.configuration_deepseek import DeepseekV2Config
from ktransformers.models.configuration_llama import LlamaConfig
from ktransformers.models.modeling_llama import LlamaRotaryEmbedding
from ktransformers.models.modeling_deepseek import DeepseekV2Attention, apply_rotary_pos_emb
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3Attention
from ktransformers.models.modeling_deepseek_v3 import apply_rotary_pos_emb as apply_rotary_pos_emb_v3
from typing import Optional, Tuple
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
......@@ -20,6 +22,206 @@ import logging
from transformers.configuration_utils import PretrainedConfig
from transformers.cache_utils import Cache
logger = logging.getLogger("attention")
class KDeepseekV3Attention(BaseInjectedModule, DeepseekV3Attention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
attn_mask: Optional[torch.Tensor] = None
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
self.softmax_scale = self.q_head_dim ** (-0.5)
def get_absorbed(self) -> Tuple[torch.Tensor, torch.Tensor]:
if not (hasattr(self, 'q_absorb') and hasattr(self, 'out_absorb')):
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :].reshape(-1, self.kv_lora_rank)
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :].reshape(-1, self.kv_lora_rank)
self.q_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.qk_nope_head_dim,
bias=False, dtype=q_absorb.dtype, device=q_absorb.device)
self.q_absorb.weight.data = q_absorb
self.out_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.v_head_dim,
bias=False, dtype=out_absorb.dtype, device=out_absorb.device)
self.out_absorb.weight.data = out_absorb
del self.orig_module.kv_b_proj
q_absorb = self.q_absorb.weight.view(self.num_heads, self.qk_nope_head_dim, self.kv_lora_rank)
out_absorb = self.out_absorb.weight.view(self.num_heads, self.v_head_dim, self.kv_lora_rank)
return q_absorb, out_absorb
def forward_chunck(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_layernorm(compressed_kv)
k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
kv_seq_len = k_pe.shape[-2]
if past_key_value is not None:
if self.layer_idx is None:
raise ValueError(
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
"with a layer index."
)
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
cos, sin = self.rotary_emb(q_pe, position_ids)
q_pe, k_pe = apply_rotary_pos_emb_v3(q_pe, k_pe, cos, sin)
if past_key_value is not None:
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
compressed_kv = compressed_kv.unsqueeze(1)
k_pe, compressed_kv = past_key_value.update(k_pe, compressed_kv, self.layer_idx, cache_kwargs)
compressed_kv = compressed_kv.squeeze(1)
#if cache_position is not None:
# compressed_kv = compressed_kv[:,: cache_position[-1] + 1,:]
# k_pe = k_pe[:,:,: cache_position[-1] + 1,:]
q_absorb, out_absorb = self.get_absorbed()
q_nope = torch.matmul(q_nope, q_absorb)
attn_weights = (torch.matmul(q_pe, k_pe.mT) + torch.matmul(q_nope, compressed_kv.unsqueeze(-3).mT)) * self.softmax_scale
"""
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
assert attention_mask is not None
"""
if attention_mask is not None:
"""
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
"""
#causal_mask = attention_mask[:, :, :, : kv_seq_len]
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(q_pe.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.attention_dropout, training=self.training
)
attn_output = torch.einsum('bhql,blc->bhqc', attn_weights, compressed_kv)
attn_output = torch.matmul(attn_output, out_absorb.mT)
if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights, past_key_value
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if "padding_mask" in kwargs:
warnings.warn(
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
)
bsz, q_len, _ = hidden_states.size()
if q_len <= self.chunck_size:
return self.forward_chunck(
hidden_states,
attention_mask,
position_ids,
past_key_value,
output_attentions,
use_cache,
cache_position,
**kwargs
)
assert output_attentions == False, "output_attentions is not supported when using chunked attention"
attn_output = None
attn_weight = None
cur_idx = 0
while cur_idx < q_len:
if attention_mask is not None:
chunk_mask = attention_mask[:, :, cur_idx:min(cur_idx + self.chunck_size, q_len), ...]
else:
# generate chunk_mask automatically.
self.attn_mask = \
torch.zeros(1, 1, self.chunck_size, past_key_value.max_cache_len, device=hidden_states.device) \
if self.attn_mask is None \
else self.attn_mask
self.attn_mask[:, :, :, cur_idx:min(cur_idx+self.chunck_size, past_key_value.max_cache_len)] = \
-1e+38 * torch.triu(torch.ones(self.chunck_size, self.chunck_size, device=hidden_states.device), diagonal=1)\
[:,:min(self.chunck_size, min(past_key_value.max_cache_len-cur_idx, self.chunck_size))]
self.attn_mask[:, :, :, cur_idx+self.chunck_size:] = -1e+38
self.attn_mask[:, :, :, :cur_idx] = 0
chunk_mask = torch.narrow(self.attn_mask, 2, 0, min(self.chunck_size, q_len-cur_idx))
cur_output, cur_attn_weight = self.forward_chunck(
hidden_states[:, cur_idx:min(cur_idx + self.chunck_size, q_len), ...],
chunk_mask,
position_ids[:, cur_idx:min(cur_idx + self.chunck_size, q_len)],
past_key_value,
output_attentions,
use_cache,
cache_position[cur_idx:min(cur_idx + self.chunck_size, q_len)],
**kwargs
)
cur_idx += self.chunck_size
if attn_output is None:
attn_output = cur_output
attn_weight = cur_attn_weight
else:
attn_output = torch.cat((attn_output, cur_output), dim=-2)
attn_weight = torch.cat((attn_weight, cur_attn_weight), dim=-2)
return attn_output, attn_weight, past_key_value
class KDeepseekV2Attention(BaseInjectedModule, DeepseekV2Attention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
attn_mask: Optional[torch.Tensor] = None
......
......@@ -302,13 +302,13 @@ class KExpertsMarlin(KExpertsBase):
if w is None: w = self.load_weights()[self.key]
if isinstance(w, dict):
self.gate = nn.Parameter(torch.from_numpy(w["gate"]))
self.up = nn.Parameter(torch.from_numpy(w["up"]))
self.down = nn.Parameter(torch.from_numpy(w["down"]))
self.gate = w["gate"]
self.up = (w["up"])
self.down = (w["down"])
for i in range(self.expert_num):
self.up_projs[i].load(self.up[i,...], device=device)
self.gate_projs[i].load(self.gate[i,...], device=device)
self.down_projs[i].load(self.down[i,...], device=device)
self.up_projs[i].load(nn.Parameter(self.up[i,...]), device=device)
self.gate_projs[i].load(nn.Parameter(self.gate[i,...]), device=device)
self.down_projs[i].load(nn.Parameter(self.down[i,...]), device=device)
self.loaded_experts_idx.append(i)
return
......@@ -342,23 +342,45 @@ class KExpertsMarlin(KExpertsBase):
up_type = self.gguf_loader.tensor_info[key + ".ffn_up_exps.weight"]["ggml_type"]
down_type = self.gguf_loader.tensor_info[key + ".ffn_down_exps.weight"]["ggml_type"]
# tensors = self.load_multi(key, [".ffn_gate_exps.weight", ".ffn_up_exps.weight", ".ffn_down_exps.weight"])
res = {key:{"gate": gate, "up": up, "down": down, "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
res = {key:{"gate": nn.Parameter(gate), "up": nn.Parameter(up), "down": nn.Parameter(down), "gate_type": gate_type, "up_type": up_type, "down_type": down_type}}
return res
def forward(self, input_tensor:torch.Tensor, expert_ids, weights):
# forward
device = input_tensor.device
input_tensor = input_tensor.to("cuda")
outs = torch.zeros_like(input_tensor)
for expert_idx in range(expert_ids.size(0)):
down_proj = self.down_projs[expert_idx]
gate_proj = self.gate_projs[expert_idx]
up_proj = self.up_projs[expert_idx]
outs += down_proj(self.act_fn(gate_proj(input_tensor)) * up_proj(input_tensor)) * weights[expert_idx]
outs = outs.to(device)
return outs
def forward(self, hidden_states_cpu: torch.Tensor, selected_experts_cpu: torch.Tensor, routing_weights_cpu: torch.Tensor) -> torch.Tensor:
org_dtype = hidden_states_cpu.dtype
org_device = hidden_states_cpu.device
hidden_states_cpu = hidden_states_cpu.to(self.device)
selected_experts_cpu = selected_experts_cpu.to(self.device)
routing_weights_cpu = routing_weights_cpu.to(self.device).to(org_dtype)
batch_sequence_length, hidden_dim = hidden_states_cpu.size()
final_hidden_states = torch.zeros(
(batch_sequence_length, hidden_dim), dtype=hidden_states_cpu.dtype, device=hidden_states_cpu.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts_cpu, num_classes=self.expert_num).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.expert_num):
if not expert_mask[expert_idx].any():
continue
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states_cpu[None, top_x].reshape(-1, hidden_dim)
G = self.gate_projs[expert_idx].forward(current_state)
A = self.act_fn(G)
U = self.up_projs[expert_idx].forward(current_state)
H = A * U # Element-wise multiplication
current_hidden_states = self.down_projs[expert_idx].forward(H) * routing_weights_cpu[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states)
return final_hidden_states.to(dtype=org_dtype, device=org_device)
class KExpertsTorch(KExpertsBase):
expert_num: int
loaded_experts_idx: list[int]
......@@ -519,6 +541,7 @@ class KTransformersExperts(BaseInjectedModule, KExpertsBase):
from ktransformers.models.modeling_deepseek import DeepseekV2MoE
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3MoE
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
from ktransformers.models.modeling_mixtral import MixtralSparseMoeBlock
......@@ -727,6 +750,107 @@ class KDeepseekV2MoE(BaseInjectedModule, DeepseekV2MoE):
)
return final_out
class KDeepseekV3MoE(BaseInjectedModule, DeepseekV3MoE):
def forward(self, hidden_states):
identity = hidden_states
orig_shape = hidden_states.shape
sequence_length = orig_shape[1]
topk_idx, topk_weight = self.gate(hidden_states)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
# only for generate phase
if sequence_length == 1 and hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing():
self.experts.generate_experts.submit_for_one_decode(hidden_states[0], topk_idx[0], topk_weight[0])
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)
y = self.experts.generate_experts.sync_for_one_decode().unsqueeze(0)
y += y_
y.resize_(*orig_shape)
return y
if self.config.n_shared_experts is not None:
y_ = self.shared_experts(identity).squeeze(0)
if isinstance(self.experts, KExpertsBase):
y = self.moe_on_cpuinfer(hidden_states, topk_idx, topk_weight).view(*orig_shape).to(device=hidden_states.device)
elif hidden_states.size(0) > 10:
# TODO may bugs here
y = (
self.moe_infer(hidden_states, topk_idx, topk_weight)
.view(*orig_shape)
.to(device=hidden_states.device)
)
else:
# TODO may bugs here
y = (
self.moe_infer_simple(hidden_states, topk_idx, topk_weight)
.view(*orig_shape)
.to(device=hidden_states.device)
)
if self.config.n_shared_experts is not None:
y += y_
return y
@torch.no_grad()
def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor) -> torch.Tensor:
outs = torch.empty_like(x)
outs = self.experts(x, topk_ids, topk_weight)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer_simple(
self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor
) -> torch.Tensor:
"""
x: [num_tokens, hidden_size]
topk_ids, topk_weight: [num_tokens, num_selected_experts]
"""
outs = torch.zeros_like(x)
for token_idx in range(topk_ids.size(0)):
for expert_idx in range(topk_ids.size(1)):
expert = self.experts[topk_ids[token_idx, expert_idx]]
outs[token_idx] += (
expert.forward(x[token_idx]) * topk_weight[token_idx, expert_idx]
)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer(self, x, topk_ids, topk_weight):
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert.forward(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
class KMistralSparseMoEBlock(BaseInjectedModule, MixtralSparseMoeBlock):
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment