Unverified Commit 1dcb8dae authored by Azure's avatar Azure Committed by GitHub
Browse files

Merge pull request #58 from Azure-Tang/main

[fix]  Fix readme datas
parents 233bbb8c 440d827e
......@@ -17,5 +17,4 @@ compile_commands.json
*dist/
ktransformers/server/local_store/
ktransformers/server_test1.db
*.patch
local_chat_djw.py
\ No newline at end of file
*.patch
\ No newline at end of file
......@@ -23,8 +23,8 @@ Our vision for KTransformers is to serve as a flexible platform for experimentin
<h2 id="Updates">🔥 Updates</h2>
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM.
* **Aug 28, 2024**: Decrease DeepseekV2's required DRAM from 20G to 10G.
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./doc/en/long_context_tutorial.md).
* **Aug 28, 2024**: Decrease DeepseekV2's required VRAM from 21G to 11G.
* **Aug 15, 2024**: Update detailed [TUTORIAL](doc/en/injection_tutorial.md) for injection and multi-GPU.
* **Aug 14, 2024**: Support llamfile as linear backend.
* **Aug 12, 2024**: Support multiple GPU; Support new model: mixtral 8\*7B and 8\*22B; Support q2k, q3k, q5k dequant on gpu.
......@@ -52,7 +52,7 @@ https://github.com/user-attachments/assets/a865e5e4-bca3-401e-94b8-af3c080e6c12
* **Enhanced Speed**: Reaches 16.91 tokens/s for generation with a 1M context using sparse attention, powered by llamafile kernels. This method is over 10 times faster than full attention approach of llama.cpp.
* **Flexible Sparse Attention Framework**: Offers a flexible block sparse attention framework for CPU offloaded decoding. Compatible with SnapKV, Quest, and InfLLm. Further information is available [here](./doc/en/long_context_tutorial.md).
* **Flexible Sparse Attention Framework**: Offers a flexible block sparse attention framework for CPU offloaded decoding. Compatible with SnapKV, Quest, and InfLLm. Further information is available [here](./doc/en/long_context_introduction.md).
<div>
<h3>GPT-4-level Local VSCode Copilot on a Desktop with only 24GB VRAM</h3>
......@@ -62,7 +62,7 @@ https://github.com/user-attachments/assets/0b9fa2da-66f0-48eb-b4b9-f0e1f06f8927
</p>
- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 21GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).
- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 11GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).
<p align="center">
<picture>
......@@ -215,7 +215,7 @@ It features the following arguments:
| Model Name | Model Size | VRAM | Minimum DRAM | Recommended DRAM |
| ------------------------------ | ---------- | ----- | --------------- | ----------------- |
| DeepSeek-V2-q4_k_m | 133G | 10G | 136G | 192G |
| DeepSeek-V2-q4_k_m | 133G | 11G | 136G | 192G |
| Qwen2-57B-A14B-Instruct-q4_k_m | 33G | 8G | 34G | 64G |
| DeepSeek-V2-Lite-q4_k_m | 9.7G | 3G | 13G | 16G |
| Mixtral-8x7B-q4_k_m | 25G | 1.6G | 51G | 64G |
......
This diff is collapsed.
This diff is collapsed.
......@@ -46,7 +46,7 @@
replace:
class: "ktransformers.operators.models.KDeepseekV2Model"
kwargs:
per_layer_prefill_intput_threshold: 2000 # 0 is close layer wise prefill
per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
- match:
name: "^model.embed_tokens"
replace:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment