bench_mlp.py 5.71 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python
# coding=utf-8
'''
Description  :  
Author       : chenht2022
Date         : 2024-07-16 10:43:18
Version      : 1.0.0
LastEditors  : chenht2022 
9
LastEditTime : 2024-08-06 10:36:04
chenxl's avatar
chenxl committed
10
11
12
13
14
15
16
17
Copyright (c) 2024 by KVCache.AI, All Rights Reserved. 
'''
import os, sys
import time
sys.path.append(os.path.dirname(__file__) + '/../build')
import cpuinfer_ext
import torch

18
19
20
21
22
23
24
25
26
27
hidden_size = 5120
intermediate_size = 3072
stride = 16
group_max_len = 1024
layer_num = 10
qlen = 1
CPUInfer = cpuinfer_ext.CPUInfer(64)
warm_up_iter = 1000
test_iter = 10000

chenxl's avatar
chenxl committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def bench_mlp(quant_mode: str):
    with torch.inference_mode(mode=True):

        hidden_type = 30 # ggml_type::GGML_TYPE_BF16
        if quant_mode == "fp32":
            gate_type = 0 # ggml_type::GGML_TYPE_F32
            up_type = 0 # ggml_type::GGML_TYPE_F32
            down_type = 0 # ggml_type::GGML_TYPE_F32
            bytes_per_elem = 4.000000
        elif quant_mode == "fp16":
            gate_type = 1 # ggml_type::GGML_TYPE_F16
            up_type = 1 # ggml_type::GGML_TYPE_F16
            down_type = 1 # ggml_type::GGML_TYPE_F16
            bytes_per_elem = 2.000000
        elif quant_mode == "bf16":
            gate_type = 30 # ggml_type::GGML_TYPE_BF16
            up_type = 30 # ggml_type::GGML_TYPE_BF16
            down_type = 30 # ggml_type::GGML_TYPE_BF16
            bytes_per_elem = 2.000000
        elif quant_mode == "q8_0":
            gate_type = 8 # ggml_type::GGML_TYPE_Q8_0
            up_type = 8 # ggml_type::GGML_TYPE_Q8_0
            down_type = 8 # ggml_type::GGML_TYPE_Q8_0
            bytes_per_elem = 1.062500
        elif quant_mode == "q6_k":
            gate_type = 14 # ggml_type::GGML_TYPE_Q6_K
            up_type = 14 # ggml_type::GGML_TYPE_Q6_K
            down_type = 14 # ggml_type::GGML_TYPE_Q6_K
            bytes_per_elem = 0.820312
        elif quant_mode == "q5_k_m":
            gate_type = 13 # ggml_type::GGML_TYPE_Q5_K
            up_type = 13 # ggml_type::GGML_TYPE_Q5_K
            down_type = 14 # ggml_type::GGML_TYPE_Q6_K
            bytes_per_elem = 0.731771
        elif quant_mode == "q4_k_m":
            gate_type = 12 # ggml_type::GGML_TYPE_Q4_K
            up_type = 12 # ggml_type::GGML_TYPE_Q4_K
            down_type = 14 # ggml_type::GGML_TYPE_Q6_K
            bytes_per_elem = 0.648437
        elif quant_mode == "q3_k_m":
            gate_type = 11 # ggml_type::GGML_TYPE_Q3_K
            up_type = 11 # ggml_type::GGML_TYPE_Q3_K
            down_type = 13 # ggml_type::GGML_TYPE_Q5_K
            bytes_per_elem = 0.515625
        elif quant_mode == "q2_k":
            gate_type = 10 # ggml_type::GGML_TYPE_Q2_K
            up_type = 10 # ggml_type::GGML_TYPE_Q2_K
            down_type = 11 # ggml_type::GGML_TYPE_Q3_K
            bytes_per_elem = 0.328125
        elif quant_mode == "iq3_xs":
            gate_type = 21 # ggml_type::GGML_TYPE_IQ3_S
            up_type = 21 # ggml_type::GGML_TYPE_IQ3_S
            down_type = 21 # ggml_type::GGML_TYPE_IQ3_S
            bytes_per_elem = 0.429688
        elif quant_mode == "iq2_xxs":
            gate_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
            up_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
            down_type = 16 # ggml_type::GGML_TYPE_IQ2_XXS
            bytes_per_elem = 0.257812
        else:
            assert(False)


        mlps = []
        gate_projs = []
        up_projs = []
        down_projs = []
        for _ in range(layer_num):
            gate_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
            up_proj = torch.randn((intermediate_size, hidden_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
            down_proj = torch.randn((hidden_size, intermediate_size), dtype=torch.float32, device = "cuda").to("cpu").contiguous()
99
            config = cpuinfer_ext.mlp.MLPConfig(hidden_size, intermediate_size, stride, group_max_len, gate_proj.data_ptr(), up_proj.data_ptr(), down_proj.data_ptr(), gate_type, up_type, down_type, hidden_type)
chenxl's avatar
chenxl committed
100
101
102
103
104
            mlp = cpuinfer_ext.mlp.MLP(config)
            gate_projs.append(gate_proj)
            up_projs.append(up_proj)
            down_projs.append(down_proj)
            mlps.append(mlp)
105
106
        input = torch.randn((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
        output = torch.empty((layer_num, qlen, hidden_size), dtype=torch.bfloat16, device = "cuda").to("cpu").contiguous()
chenxl's avatar
chenxl committed
107
108
109

        # warm up
        for i in range(warm_up_iter):
110
111
112
113
114
115
116
            CPUInfer.submit(
                mlps[i % layer_num].forward( 
                    qlen, 
                    input[i % layer_num].data_ptr(), 
                    output[i % layer_num].data_ptr()
                )
            )
chenxl's avatar
chenxl committed
117
118
119
            CPUInfer.sync()

        # test
120
        start = time.perf_counter()
chenxl's avatar
chenxl committed
121
        for i in range(test_iter):
122
123
124
125
126
127
128
            CPUInfer.submit(
                mlps[i % layer_num].forward( 
                    qlen, 
                    input[i % layer_num].data_ptr(), 
                    output[i % layer_num].data_ptr()
                )
            )
chenxl's avatar
chenxl committed
129
            CPUInfer.sync()
130
131
        end = time.perf_counter()
        total_time = end - start
chenxl's avatar
chenxl committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        print('Quant mode: ', quant_mode)
        print('Time(s): ', total_time)
        print('Iteration: ', test_iter) 
        print('Time(us) per iteration: ', total_time / test_iter * 1000000)
        print('Bandwidth: ', hidden_size * intermediate_size * 3 * bytes_per_elem * test_iter / total_time / 1000 / 1000 / 1000, 'GB/s')
        print('')

bench_mlp("fp32")
bench_mlp("fp16")
bench_mlp("bf16")
bench_mlp("q8_0")
bench_mlp("q6_k")
bench_mlp("q5_k_m")
bench_mlp("q4_k_m")
bench_mlp("q3_k_m")
bench_mlp("q2_k")
# Not supported on __x86_64__
# bench_linear("iq3_xs")
# bench_linear("iq2_xxs")