"neural_gpu/data_utils.py" did not exist on "15f82d209f1428d948d0467a573741c15f607e43"
test_attention.py 3.89 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# coding=utf-8
"""
Description  :  
Author       : Jianwei Dong
Date         : 2024-08-28 10:32:05
Version      : 1.0.0
LastEditors  : chenht2022 
LastEditTime : 2024-08-28 10:32:05
Copyright (c) 2024 by KVCache.AI, All Rights Reserved. 
"""
import os, sys
import time

sys.path.append(os.path.dirname(__file__) + "/../build")
import cpuinfer_ext
from flash_attn import flash_attn_with_kvcache
import torch

layer_num = 10
kv_head_num = 8
q_head_num = 32
head_dim = 128
block_len = 128
anchor_num = 1
cache_seqlen = 8192
cache_seqlens = torch.tensor([cache_seqlen], dtype=torch.int32, device="cpu")
seqlens_zero = torch.zeros((1,), dtype=torch.int32, device="cpu")
anchor_type = cpuinfer_ext.kvcache.AnchorType.DYNAMIC
kv_type = cpuinfer_ext.kvcache.ggml_type.FP16
retrieval_type = cpuinfer_ext.kvcache.RetrievalType.LAYER
layer_step: int = 1
token_step: int = 1
layer_offset: int = 0
max_thread_num: int = 2
max_batch_size: int = 1
max_block_num: int = 512
CPUInfer = cpuinfer_ext.CPUInfer(max_thread_num)
validation_iter = 100

with torch.inference_mode(mode=True):
    config = cpuinfer_ext.kvcache.KVCacheConfig(
        layer_num,
        kv_head_num,
        q_head_num,
        head_dim,
        block_len,
        anchor_num,
        anchor_type,
        kv_type,
        retrieval_type,
        layer_step,
        token_step,
        layer_offset,
        max_block_num,
        max_batch_size,
        max_thread_num,
    )
    local_kvcache = cpuinfer_ext.kvcache.KVCache(config)

    kvcaches = []
    block_table = (
        torch.arange(max_block_num, dtype=torch.int32, device="cpu")
        .contiguous()
        .view(1, -1)
    )

    for layer_idx in range(layer_num):
        k_cache = torch.randn(
            (1, cache_seqlen, kv_head_num, head_dim), dtype=torch.float16, device="cpu"
        ).contiguous()
        v_cache = torch.randn(
            (1, cache_seqlen, kv_head_num, head_dim), dtype=torch.float16, device="cpu"
        ).contiguous()

        CPUInfer.submit(
            local_kvcache.update_kvcache_fp16(
                k_cache.data_ptr(),
                v_cache.data_ptr(),
                layer_idx,
                block_table.data_ptr(),
                1,
                max_block_num,
                seqlens_zero.data_ptr(),
                cache_seqlen,
            )
        )
        CPUInfer.sync()

        kvcaches.append((k_cache.to("cuda"), v_cache.to("cuda")))

    # validation
    for i in range(validation_iter):

        k_cache = kvcaches[i % layer_num][0]
        v_cache = kvcaches[i % layer_num][1]
        input = torch.randn(
            (1, 1, q_head_num, head_dim), dtype=torch.float16, device="cpu"
        ).contiguous()
        output = torch.empty(
            (1, 1, q_head_num, head_dim), dtype=torch.float16, device="cpu"
        ).contiguous()

        # attn_lse: (bsz, q_len, q_head_num)
        attn_lse = torch.empty(
            (1, 1, q_head_num), dtype=torch.float32, device="cpu"
        ).contiguous()
        input = input / 100

        CPUInfer.submit(
            local_kvcache.attn(
                input.data_ptr(),
                output.data_ptr(),
                attn_lse.data_ptr(),
                i % layer_num,
                0,
                1,
                1,
                max_block_num,
                block_table.data_ptr(),
                cache_seqlens.data_ptr(),
                -1,
                -1,
                -1,
            )
        )
        CPUInfer.sync()
        # print("cpuinfer output", output)

        t_output = flash_attn_with_kvcache(
            q=input.to("cuda"),
            k_cache=k_cache,
            v_cache=v_cache,
            cache_seqlens=cache_seqlens.to("cuda"),
        )
        # print("torch output", t_output)

        diff = torch.mean(torch.abs(output.to("cuda") - t_output)) / torch.mean(
            torch.abs(t_output)
        )
        print("diff = ", diff)
        assert diff < 0.001