"vscode:/vscode.git/clone" did not exist on "dda3ba756717c2513f4dbacb19ec0d118d667ed7"
DeepSeek-V3-Chat-multi-gpu.yaml 4.97 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
- match:
    name: "^model.embed_tokens"
  replace:
    class: "default"
    kwargs:
        generate_device: "cpu"
        prefill_device: "cpu"

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
Azure's avatar
Azure committed
11
    class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
12
  replace:
liam's avatar
liam committed
13
    class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
14
15
16
17
18
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"
- match:
    name: "^model\\.layers\\.([3456][0-9])\\."
Azure's avatar
Azure committed
19
    class: ktransformers.models.modeling_deepseek_v3.DeepseekV3RotaryEmbedding
20
  replace:
liam's avatar
liam committed
21
    class: ktransformers.operators.RoPE.YarnRotaryEmbeddingV3
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.(?!self_attn\\.kv_b_proj).*$"  # regular expression 
    class: torch.nn.Linear  # only match modules matching name and class simultaneously
  replace:
    class: ktransformers.operators.linear.KTransformersLinear  # optimized Kernel on quantized data types
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"
      generate_op: "KLinearMarlin"
      prefill_op: "KLinearTorch"

- match:
    name: "^model\\.layers\\.([3456][0-9])\\.(?!self_attn\\.kv_b_proj).*$"  # regular expression 
    class: torch.nn.Linear  # only match modules matching name and class simultaneously
  replace:
    class: ktransformers.operators.linear.KTransformersLinear  # optimized Kernel on quantized data types
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"
      generate_op: "KLinearMarlin"
      prefill_op: "KLinearTorch"
  
- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp$"
50
    class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
51
52
53
54
55
56
57
  replace:
    class: ktransformers.operators.experts.KDeepseekV3MoE     # mlp module with custom forward function
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"
- match:
    name: "^model\\.layers\\.([3456][0-9])\\.mlp$"
58
    class: ktransformers.models.modeling_deepseek_v3.DeepseekV3MoE
59
60
61
62
63
64
65
66
  replace:
    class: ktransformers.operators.experts.KDeepseekV3MoE     # mlp module with custom forward function
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.gate$"
Azure's avatar
Azure committed
67
    class: ktransformers.models.modeling_deepseek_v3.MoEGate
68
69
70
71
72
73
74
  replace:
    class: ktransformers.operators.gate.KMoEGate
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"
- match:
    name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.gate$"
Azure's avatar
Azure committed
75
    class: ktransformers.models.modeling_deepseek_v3.MoEGate
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
  replace:
    class: ktransformers.operators.gate.KMoEGate     # mlp module with custom forward function
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.mlp\\.experts$"
  replace:
    class: ktransformers.operators.experts.KTransformersExperts     # custom MoE Kernel with expert paralleism
    kwargs:
      prefill_device: "cuda:0"
      prefill_op: "KExpertsTorch"
      generate_device: "cpu"
      generate_op:  "KExpertsCPU"
      out_device: "cuda:0"
  recursive: False # don't recursively inject submodules of this module

- match:
    name: "^model\\.layers\\.([3456][0-9])\\.mlp\\.experts$"
  replace:
    class: ktransformers.operators.experts.KTransformersExperts     # custom MoE Kernel with expert paralleism
    kwargs:
      prefill_device: "cuda:1"
      prefill_op: "KExpertsTorch"
      generate_device: "cpu"
      generate_op:  "KExpertsCPU"
      out_device: "cuda:1"
  recursive: False # don't recursively inject submodules of this module

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\.self_attn$"
  replace:
Azure's avatar
Azure committed
109
    class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
110
111
112
113
114
115
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"
- match:
    name: "^model\\.layers\\.([3456][0-9])\\.self_attn$"
  replace:
Azure's avatar
Azure committed
116
    class: ktransformers.operators.attention.KDeepseekV2Attention # optimized MLA implementation
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"
- match:
    name: "^model$"
  replace:
    class: "ktransformers.operators.models.KDeepseekV2Model"
    kwargs:
      per_layer_prefill_intput_threshold: 0 # 0 is close layer wise prefill
      transfer_map: 
        30: "cuda:1"

- match:
    name: "^model\\.layers\\.(0|[1-9]|[12][0-9])\\."
  replace:
    class: "default"
    kwargs:
      generate_device: "cuda:0"
      prefill_device: "cuda:0"

- match:
138
139
140
141
142
143
144
145
146
147
148
149
    name: "^lm_head"
    class: torch.nn.Linear
  replace:
    class: ktransformers.operators.linear.KTransformersLinear
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"
      generate_op: "KLinearMarlin"
      prefill_op: "KLinearTorch"

- match:
    name: "(^model\\.layers\\.([3456][0-9])\\.)|(model.norm)"
150
151
152
153
154
  replace:
    class: "default"
    kwargs:
      generate_device: "cuda:1"
      prefill_device: "cuda:1"