tinyblas_cpu.h 32.1 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
// Adapted from
// https://github.com/Mozilla-Ocho/llamafile/blob/0.8.8/llamafile/tinyblas_cpu.h
// Copyrigth 2024 Mozilla Foundation.
// Copyright(c) 2024 by KVCache.AI, All Rights Reserved.

// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*-
// vi: set et ft=cpp ts=4 sts=4 sw=4 fenc=utf-8 :vi
//
// Copyright 2024 Mozilla Foundation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//
//
//                                ██████╗ ██╗   █████╗ ██████╗
//         ██████╗██╗██╗ ██╗██═██╗██╔══██╗██║  ██╔══██╗██╔═══╝
//         ╚═██╔═╝██║███▄██║██ ██║██████╔╝██║  ███████║██████╗
//           ██║  ██║██▀███║╚███╔╝██╔══██╗██║  ██╔══██║╔═══██║
//           ██║  ██║██║ ██║ ███║ ██████╔╝████╗██║  ██║██████║
//           ╚═╝  ╚═╝╚═╝ ╚═╝ ╚══╝ ╚═════╝ ╚═══╝╚═╝  ╚═╝╚═════╝
//
//                   BASIC LINEAR ALGEBRA SUBPROGRAMS
//
//
// This file implements multithreaded CPU matrix multiplication for the
// common contiguous use case C = Aᵀ * B. These kernels are designed to
// have excellent performance[1] for matrices that fit in the CPU cache
// without imposing any overhead such as cache filling or malloc calls.
//
// This implementation does not guarantee any upper bound with rounding
// errors, which grow along with k. Our goal's to maximally exploit the
// hardware for performance, and then use whatever resources remain for
// improving numerical accuracy.
//
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
//     Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].

#pragma once

#include "llama.cpp/ggml-impl.h"
#include "llama.cpp/ggml-quants.h"
// #include "log.h"
#include "flags.h"
#include "sgemm.h"
// #include <cosmo.h>

#pragma GCC diagnostic ignored "-Wpedantic"
#pragma GCC diagnostic ignored "-Wignored-attributes"

#define ROW_ALIGN 64
#define MATRIX_ALIGN 4096
#define MAX_ALIGN 4096

#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif

#if defined(__ARM_NEON) || defined(__AVX512F__)
#define VECTOR_REGISTERS 32
#else
#define VECTOR_REGISTERS 16
#endif

#if 0
#define NOT_SUPPORTED tinyBLAS_not_supported(__FILE__, __LINE__)
#else
#define NOT_SUPPORTED false
#endif
#define WANT_QUANTIZATION false

namespace {

bool tinyBLAS_not_supported(const char* file, int line) {
    // tinylogf("%s:%d: tinyBLAS not supported\n", file, line);
    return false;
}

inline float unhalf(ggml_fp16_t d) {
    return GGML_FP16_TO_FP32(d);
}
inline float unhalf(ggml_bf16_t d) {
    return GGML_BF16_TO_FP32(d);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// MATRIX MEMORY INDEXING

#define NCA 1
#define NCB 2
#define NCC 4

#define INDEX(A, lda, j, i) (CONFIG & NC##A ? ((T##A**)A)[j] + i : A + lda * (j) + i)

////////////////////////////////////////////////////////////////////////////////////////////////////
// GGML TYPE TRAITS

template <typename T>
struct ggml_type_trait;
template <>
struct ggml_type_trait<float> {
    static constexpr ggml_type id = GGML_TYPE_F32;
};
template <>
struct ggml_type_trait<ggml_bf16_t> {
    static constexpr ggml_type id = GGML_TYPE_BF16;
};
template <>
struct ggml_type_trait<ggml_fp16_t> {
    static constexpr ggml_type id = GGML_TYPE_F16;
};
template <>
struct ggml_type_trait<block_q8_0> {
    static constexpr ggml_type id = GGML_TYPE_Q8_0;
};

////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED ARITHMETIC OPERATIONS

#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m128 add(__m128 x, __m128 y) {
    return _mm_add_ps(x, y);
}
inline __m128 sub(__m128 x, __m128 y) {
    return _mm_sub_ps(x, y);
}
inline __m128 mul(__m128 x, __m128 y) {
    return _mm_mul_ps(x, y);
}
#endif  // __SSE__

#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline __m256 add(__m256 x, __m256 y) {
    return _mm256_add_ps(x, y);
}
inline __m256 sub(__m256 x, __m256 y) {
    return _mm256_sub_ps(x, y);
}
inline __m256 mul(__m256 x, __m256 y) {
    return _mm256_mul_ps(x, y);
}
#endif  // __AVX__

#if defined(__AVX512F__)
inline __m512 add(__m512 x, __m512 y) {
    return _mm512_add_ps(x, y);
}
inline __m512 sub(__m512 x, __m512 y) {
    return _mm512_sub_ps(x, y);
}
inline __m512 mul(__m512 x, __m512 y) {
    return _mm512_mul_ps(x, y);
}
#endif  // __AVX512F__

#if defined(__ARM_NEON)
inline float32x4_t add(float32x4_t x, float32x4_t y) {
    return vaddq_f32(x, y);
}
inline float32x4_t sub(float32x4_t x, float32x4_t y) {
    return vsubq_f32(x, y);
}
inline float32x4_t mul(float32x4_t x, float32x4_t y) {
    return vmulq_f32(x, y);
}
#endif  // __ARM_NEON

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
inline float16x8_t add(float16x8_t x, float16x8_t y) {
    return vaddq_f16(x, y);
}
inline float16x8_t sub(float16x8_t x, float16x8_t y) {
    return vsubq_f16(x, y);
}
inline float16x8_t mul(float16x8_t x, float16x8_t y) {
    return vmulq_f16(x, y);
}
#endif  // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED FUSED MULTIPLY ADD

/**
 * Computes a * b + c.
 */
template <typename T, typename U>
inline U madd(T a, T b, U c) {
    return add(mul(a, b), c);
}

/**
 * Computes a * b + c with error correction.
 *
 * @see W. Kahan, "Further remarks on reducing truncation errors,"
 *    Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965,
 *    doi: 10.1145/363707.363723.
 */
template <typename T, typename U>
inline U madder(T a, T b, U c, U* e) {
    U y = sub(mul(a, b), *e);
    U t = add(c, y);
    *e = sub(sub(t, c), y);
    return t;
}

#ifdef __ARM_NEON
inline float32x4_t badder(float32x4_t a, float b, float32x4_t c, float32x4_t* e) {
    float32x4_t y = sub(vmulq_n_f32(a, b), *e);
    float32x4_t t = add(c, y);
    *e = sub(sub(t, c), y);
    return t;
}
#endif

#if defined(__FMA__)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 madd(__m256 a, __m256 b, __m256 c) {
    return _mm256_fmadd_ps(a, b, c);
}
#endif
#if defined(__AVX512F__)
template <>
inline __m512 madd(__m512 a, __m512 b, __m512 c) {
    return _mm512_fmadd_ps(a, b, c);
}
#endif
#endif

#if defined(__ARM_FEATURE_FMA)
template <>
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
    return vfmaq_f32(c, a, b);
}
#if 0  // todo: this specialization chops gcc 12.3 performance in half
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) && 0
template <>
inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
    return vfmaq_f16(c, b, a);
}
#endif
#endif
#endif

#if defined(__AVX512BF16__)
template <>
inline __m512 madd(__m512bh x, __m512bh y, __m512 z) {
    return _mm512_dpbf16_ps(z, x, y);
}
template <>
inline __m512 madder(__m512bh x, __m512bh y, __m512 z, __m512* _) {
    return _mm512_dpbf16_ps(z, x, y);
}
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED HORIZONTAL SUM

#if defined(__ARM_NEON)
inline float hsum(float32x4_t x) {
    return vaddvq_f32(x);
}
#endif  // __ARM_NEON

#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
inline float hsum(float16x8_t x) {
    // todo: this works great on clang but it produces terrible code on gcc 12.3
    return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)), vcvt_f32_f16(vget_high_f16(x))));
}
#endif  // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m128 x) {
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
    x = _mm_add_ps(x, _mm_movehl_ps(x, x));
    x = _mm_add_ss(x, _mm_movehdup_ps(x));
#else
    __m128 t;
    t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
    x = _mm_add_ps(x, t);
    t = _mm_movehl_ps(t, x);
    x = _mm_add_ss(x, t);
#endif
    return _mm_cvtss_f32(x);
}
#endif

#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
inline float hsum(__m256 x) {
    return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x)));
}
#endif  // __AVX__

#if defined(__AVX512F__)
inline float hsum(__m512 x) {
    return _mm512_reduce_add_ps(x);
}
#endif  // __AVX512F__

////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED MEMORY LOADING

template <typename T, typename U>
T load(const U*);

template <>
inline float load(const float* p) {
    return *p;
}
template <>
inline float load(const ggml_fp16_t* p) {
    return unhalf(*p);
}
template <>
inline float load(const ggml_bf16_t* p) {
    return unhalf(*p);
}

#if defined(__ARM_NEON)
template <>
inline float32x4_t load(const float* p) {
    return vld1q_f32(p);
}
template <>
inline float32x4_t load(const ggml_bf16_t* p) {
    return vreinterpretq_f32_u32(vshll_n_u16(vld1_u16((const unsigned short*)p), 16));
}
#if !defined(_MSC_VER)
template <>
inline float16x8_t load(const ggml_fp16_t* p) {
    return vld1q_f16((const float16_t*)p);
}
template <>
inline float32x4_t load(const ggml_fp16_t* p) {
    return vcvt_f32_f16(vld1_f16((const float16_t*)p));
}
#endif  // _MSC_VER
#endif  // __ARM_NEON

#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m128 load(const float* p) {
    return _mm_loadu_ps(p);
}
#endif  // __SSE__

#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 load(const float* p) {
    return _mm256_loadu_ps(p);
}
#endif  // __AVX__

#if defined(__AVX2__) || defined(__AVX512F__)
template <>
inline __m256 load(const ggml_bf16_t* p) {
    return _mm256_castsi256_ps(
        _mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i*)p)), 16));
}
#endif  // __AVX2__

#if defined(__F16C__)
template <>
inline __m256 load(const ggml_fp16_t* p) {
    return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)p));
}
#endif  // __F16C__

#if defined(__AVX512F__)
template <>
inline __m512 load(const float* p) {
    return _mm512_loadu_ps(p);
}
template <>
inline __m512 load(const ggml_fp16_t* p) {
    return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i*)p));
}
template <>
inline __m512 load(const ggml_bf16_t* p) {
    return _mm512_castsi512_ps(
        _mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i*)p)), 16));
}
#endif  // __AVX512F__

#if defined(__AVX512BF16__)
template <>
inline __m512bh load(const ggml_bf16_t* p) {
    return (__m512bh)_mm512_loadu_ps((const float*)p);
}
template <>
inline __m512bh load(const float* p) {
    return _mm512_cvtne2ps_pbh(_mm512_loadu_ps(p + 16), _mm512_loadu_ps(p));
}
#endif  // __AVX512BF16__

////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT OUTPUT STREAMING

inline void store(float* p, float f) {
    *p = f;
}

inline void store(ggml_fp16_t* p, float f) {
    *p = GGML_FP32_TO_FP16(f);
}

inline void store(ggml_bf16_t* p, float f) {
    *p = GGML_FP32_TO_BF16(f);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION

template <int CONFIG, int KN, typename D, typename V, typename TA, typename TB, typename TC>
class tinyBLAS {
   public:
    tinyBLAS(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
        : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
    }

    void matmul(long m, long n, int task) {
        if (task == GGML_TASK_TYPE_COMPUTE)
            mnpack(0, m, 0, n);
    }

   private:
    NOINLINE void mnpack(long m0, long m, long n0, long n) {
        long mc, nc, mp, np;

#if VECTOR_REGISTERS == 32
        if (!FLAG_precise) {
            switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
                case 0x55:
                    mc = 5;
                    nc = 5;
                    gemm<5, 5, false>(m0, m, n0, n);
                    break;
                case 0x54:
                case 0x53:
                case 0x52:
                case 0x45:
                case 0x44:
                case 0x43:
                case 0x42:
                case 0x35:
                case 0x34:
                case 0x33:
                case 0x32:
                case 0x25:
                case 0x24:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, false>(m0, m, n0, n);
                    break;
                case 0x51:
                case 0x41:
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, false>(m0, m, n0, n);
                    break;
                case 0x15:
                case 0x14:
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, false>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, false>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        } else {
            switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 3)) {
                case 0x43:
                    mc = 4;
                    nc = 3;
                    gemm<4, 3, true>(m0, m, n0, n);
                    break;
                case 0x42:
                case 0x33:
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, true>(m0, m, n0, n);
                    break;
                case 0x41:
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        }
#endif

#if VECTOR_REGISTERS == 16
        if (!FLAG_precise) {
            switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 3)) {
                case 0x43:
                    mc = 4;
                    nc = 3;
                    gemm<4, 3, false>(m0, m, n0, n);
                    break;
                case 0x42:
                case 0x33:
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, false>(m0, m, n0, n);
                    break;
                case 0x41:
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, false>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, false>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, false>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        } else {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 2)) {
                case 0x32:
                    mc = 3;
                    nc = 2;
                    gemm<3, 2, true>(m0, m, n0, n);
                    break;
                case 0x23:
                    mc = 2;
                    nc = 3;
                    gemm<2, 3, true>(m0, m, n0, n);
                    break;
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, true>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        }
#endif

        mp = m0 + (m - m0) / mc * mc;
        np = n0 + (n - n0) / nc * nc;
        mnpack(mp, m, n0, np);
        mnpack(m0, m, np, n);
    }

    template <int RM, int RN, int PRECISE>
    NOINLINE void gemm(long m0, long m, long n0, long n) {
        long ytiles = RM > 1 ? (m - m0) / RM : 1;
        long xtiles = RN > 1 ? (n - n0) / RN : 1;
        long tiles = xtiles * ytiles;
        long duty = (tiles + nth - 1) / nth;
        long start = duty * ith;
        long end = start + duty;
        if (end > tiles)
            end = tiles;
        for (long job = start; job < end; ++job) {
            long ii = m0 + job / xtiles * RM;
            long jj = n0 + job % xtiles * RN;
            D Cv[RN][RM] = {};
            D Ce[RN][RM] = {};
            for (long l = 0; l < k; l += KN)
#pragma GCC unroll 100
                for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                    for (int i = 0; i < RM; ++i)
                        if (PRECISE)
                            Cv[j][i] = madder(load<V>(INDEX(A, lda, ii + i, l)),  //
                                              load<V>(INDEX(B, ldb, jj + j, l)),  //
                                              Cv[j][i], &Ce[j][i]);
                        else
                            Cv[j][i] = madd(load<V>(INDEX(A, lda, ii + i, l)),  //
                                            load<V>(INDEX(B, ldb, jj + j, l)),  //
                                            Cv[j][i]);
#pragma GCC unroll 100
            for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                for (int i = 0; i < RM; ++i)
                    store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
        }
    }

    const TA* const A;
    const TB* const B;
    TC* const C;
    const long k;
    const long lda;
    const long ldb;
    const long ldc;
    const int ith;
    const int nth;
};

//////////////////////////////////////////////////////////////////////////////////////////
// QUANT ZERO MATRIX MULTIPLICATION

#if defined(__ARM_FEATURE_DOTPROD)
template <int CONFIG, typename TA, typename TB, typename TC>
class tinyBLAS_Q0_ARM {
   public:
    tinyBLAS_Q0_ARM(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
        : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
    }

    void matmul(long m, long n, int task) {
        if (task == GGML_TASK_TYPE_COMPUTE)
            mnpack(0, m, 0, n);
    }

   private:
    NOINLINE void mnpack(long m0, long m, long n0, long n) {
        long mc, nc, mp, np;

        if (!FLAG_precise) {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
                case 0x33:
                    mc = 3;
                    nc = 3;
                    gemm<3, 3, false>(m0, m, n0, n);
                    break;
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, false>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, false>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, false>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, false>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        } else {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
                case 0x33:
                    mc = 3;
                    nc = 3;
                    gemm<3, 3, true>(m0, m, n0, n);
                    break;
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, true>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        }

        mp = m0 + (m - m0) / mc * mc;
        np = n0 + (n - n0) / nc * nc;
        mnpack(mp, m, n0, np);
        mnpack(m0, m, np, n);
    }

    template <int RM, int RN, int PRECISE>
    NOINLINE void gemm(long m0, long m, long n0, long n) {
        long ytiles = RM > 1 ? (m - m0) / RM : 1;
        long xtiles = RN > 1 ? (n - n0) / RN : 1;
        long tiles = xtiles * ytiles;
        long duty = (tiles + nth - 1) / nth;
        long start = duty * ith;
        long end = start + duty;
        if (end > tiles)
            end = tiles;
        for (long job = start; job < end; ++job) {
            long ii = m0 + job / xtiles * RM;
            long jj = n0 + job % xtiles * RN;
            float32x4_t Cv[RN][RM] = {};
            float32x4_t Ce[RN][RM] = {};
            for (int l = 0; l < k; ++l)
#pragma GCC unroll 100
                for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                    for (int i = 0; i < RM; ++i) {
                        float32x4_t a = vcvtq_f32_s32(vdotq_s32(
                            vdotq_s32(vdupq_n_s32(0), load_lo(INDEX(A, lda, ii + i, l)),
                                      load_lo(INDEX(B, ldb, jj + j, l))),
                            load_hi(INDEX(A, lda, ii + i, l)), load_hi(INDEX(B, ldb, jj + j, l))));
                        float b = unhalf(INDEX(A, lda, ii + i, l)->d) *
                                  unhalf(INDEX(B, ldb, jj + j, l)->d);
                        if (PRECISE)
                            Cv[j][i] = badder(a, b, Cv[j][i], &Ce[j][i]);
                        else
                            Cv[j][i] = vmlaq_n_f32(Cv[j][i], a, b);
                    }
#pragma GCC unroll 100
            for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                for (int i = 0; i < RM; ++i)
                    store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
        }
    }

    inline int8x16_t load_lo(const block_q8_0* b) {
        return vld1q_s8(b->qs);
    }

    inline int8x16_t load_hi(const block_q8_0* b) {
        return vld1q_s8(b->qs + 16);
    }

    inline int8x16_t load_lo(const block_q4_0* b) {
        return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs), vdupq_n_u8(0x0f))),
                        vdupq_n_s8(0x8));
    }

    inline int8x16_t load_hi(const block_q4_0* b) {
        return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)), vdupq_n_s8(0x8));
    }

    const TA* const A;
    const TB* const B;
    TC* const C;
    const long k;
    const long lda;
    const long ldb;
    const long ldc;
    const int ith;
    const int nth;
};
#endif  // __ARM_FEATURE_DOTPROD

#if defined(__AVX2__) || defined(__AVX512F__)
template <int CONFIG, typename TA, typename TB, typename TC>
class tinyBLAS_Q0_AVX2 {
   public:
    tinyBLAS_Q0_AVX2(long k, const TA* A, long lda, const TB* B, long ldb, TC* C, long ldc, int ith, int nth)
        : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
    }

    void matmul(long m, long n, int task) {
        if (task == GGML_TASK_TYPE_COMPUTE)
            mnpack(0, m, 0, n);
    }

   private:
    void mnpack(long m0, long m, long n0, long n) {
        long mc, nc, mp, np;

#if VECTOR_REGISTERS == 32
        if (!FLAG_precise) {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
                case 0x33:
                    mc = 3;
                    nc = 3;
                    gemm<3, 3, false>(m0, m, n0, n);
                    break;
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, false>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        } else {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3)) {
                case 0x33:
                    mc = 3;
                    nc = 3;
                    gemm<3, 3, true>(m0, m, n0, n);
                    break;
                case 0x32:
                case 0x23:
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, true>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x13:
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        }
#endif

#if VECTOR_REGISTERS == 16
        if (!FLAG_precise) {
            switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 2)) {
                case 0x32:
                    mc = 3;
                    nc = 2;
                    gemm<3, 2, false>(m0, m, n0, n);
                    break;
                case 0x23:
                    mc = 2;
                    nc = 3;
                    gemm<2, 3, false>(m0, m, n0, n);
                    break;
                case 0x22:
                    mc = 2;
                    nc = 2;
                    gemm<2, 2, false>(m0, m, n0, n);
                    break;
                case 0x31:
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, false>(m0, m, n0, n);
                    break;
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, false>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, false>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        } else {
            switch ((MIN(m - m0, 2) << 4) | MIN(n - n0, 1)) {
                case 0x21:
                    mc = 2;
                    nc = 1;
                    gemm<2, 1, true>(m0, m, n0, n);
                    break;
                case 0x12:
                    mc = 1;
                    nc = 2;
                    gemm<1, 2, true>(m0, m, n0, n);
                    break;
                case 0x11:
                    mc = 1;
                    nc = 1;
                    gemm<1, 1, true>(m0, m, n0, n);
                    break;
                default:
                    return;
            }
        }
#endif

        mp = m0 + (m - m0) / mc * mc;
        np = n0 + (n - n0) / nc * nc;
        mnpack(mp, m, n0, np);
        mnpack(m0, m, np, n);
    }

    template <int RM, int RN, int PRECISE>
    NOINLINE void gemm(long m0, long m, long n0, long n) {
        long ytiles = RM > 1 ? (m - m0) / RM : 1;
        long xtiles = RN > 1 ? (n - n0) / RN : 1;
        long tiles = xtiles * ytiles;
        long duty = (tiles + nth - 1) / nth;
        long start = duty * ith;
        long end = start + duty;
        if (end > tiles)
            end = tiles;
        for (long job = start; job < end; ++job) {
            long ii = m0 + job / xtiles * RM;
            long jj = n0 + job % xtiles * RN;
            __m256 Cv[RN][RM] = {};
            __m256 Ce[RN][RM] = {};
            for (long l = 0; l < k; ++l)
#pragma GCC unroll 100
                for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                    for (int i = 0; i < RM; ++i) {
                        __m256 a = _mm256_set1_ps(unhalf(INDEX(A, lda, ii + i, l)->d) *
                                                  unhalf(INDEX(B, ldb, jj + j, l)->d));
                        __m256 b = updot(_mm256_sign_epi8(load(INDEX(A, lda, ii + i, l)),
                                                          load(INDEX(A, lda, ii + i, l))),
                                         _mm256_sign_epi8(load(INDEX(B, ldb, jj + j, l)),
                                                          load(INDEX(A, lda, ii + i, l))));
                        if (PRECISE)
                            Cv[j][i] = madder(a, b, Cv[j][i], &Ce[j][i]);
                        else
                            Cv[j][i] = madd(a, b, Cv[j][i]);
                    }
#pragma GCC unroll 100
            for (int j = 0; j < RN; ++j)
#pragma GCC unroll 100
                for (int i = 0; i < RM; ++i)
                    store(INDEX(C, ldc, jj + j, ii + i), hsum(Cv[j][i]));
        }
    }

    inline __m256i load(const block_q8_0* b) {
        return _mm256_loadu_si256((const __m256i*)b->qs);
    }

    inline __m256i load(const block_q4_0* b) {
        __m128i x = _mm_loadu_si128((const __m128i*)b->qs);
        return _mm256_sub_epi8(_mm256_and_si256(_mm256_set1_epi8(15),
                                                _mm256_insertf128_si256(_mm256_castsi128_si256(x),
                                                                        _mm_srli_epi16(x, 4), 1)),
                               _mm256_set1_epi8(8));
    }

    inline __m256 updot(__m256i u, __m256i s) {
        __m256i res;
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
        res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
#else
        res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
#endif
        return _mm256_cvtepi32_ps(res);
    }

    const TA* const A;
    const TB* const B;
    TC* const C;
    const long k;
    const long lda;
    const long ldb;
    const long ldc;
    const int ith;
    const int nth;
};
#endif  // __AVX2__

}  // namespace