README.md 14.8 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
<div align="center">
  <!-- <h1>KTransformers</h1> -->
  <p align="center">
  
  <picture>
    <img alt="DeepSeek-Coder-V2 Score" src="https://github.com/user-attachments/assets/9fa710bf-1389-46b7-b9d2-3f67b98bd7a6" width=50%>
  </picture>
  
  </p>
  <h3>A Flexible Framework for Experiencing Cutting-edge LLM Inference Optimizations</h3>
  <strong><a href="#show-cases">🔥 Show Cases</a> | <a href="#quick-start">🚀 Quick Start</a> | <a href="#tutorial">📃 Tutorial</a> | <a href="https://github.com/kvcache-ai/ktransformers/discussions">💬  Discussion </a> </strong>
</div>


<h2 id="intro">🎉 Introduction</h2>
KTransformers, pronounced as Quick Transformers, is designed to enhance your 🤗 <a href="https://github.com/huggingface/transformers">Transformers</a> experience with advanced kernel optimizations and placement/parallelism strategies.
<br/><br/>
KTransformers is a flexible, Python-centric framework designed with extensibility at its core. 
By implementing and injecting an optimized module with a single line of code, users gain access to a Transformers-compatible
interface, RESTful APIs compliant with OpenAI and Ollama, and even a simplified ChatGPT-like web UI. 
<br/><br/>
Our vision for KTransformers is to serve as a flexible platform for experimenting with innovative LLM inference optimizations. Please let us know if you need any other features.


<h2 id="show-cases">🔥 Show Cases</h2>
<h3>GPT-4-level Local VSCode Copilot on a Desktop with only 24GB VRAM</h3>
<p align="center">

  https://github.com/user-attachments/assets/3f85780e-aa53-4d2f-91b2-5585c8dade85

</p>

- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 21GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).

<p align="center">
  <picture>
    <img alt="DeepSeek-Coder-V2 Score" src="https://github.com/user-attachments/assets/81efb94f-f859-4413-b6e0-d986508ad667" width=80%>
  </picture>
</p>

- **Faster Speed:** Achieving 126 tokens/s for 2K prompt prefill and 13.6 tokens/s for generation through MoE offloading and injecting advanced kernels from [Llamafile](https://github.com/Mozilla-Ocho/llamafile/tree/main) and [Marlin](https://github.com/IST-DASLab/marlin).
- **VSCode Integration:** Wrapped into an OpenAI and Ollama compatible API for seamless integration as a backend for [Tabby](https://github.com/TabbyML/tabby) and various other frontends.

<p align="center">
  <!-- <img alt="Tabby integration" src="https://XXXX.png" width=55%> -->

  https://github.com/user-attachments/assets/e6e27cb3-8372-44e6-8f1f-34402eae56c1
  
</p>


<strong>More advanced features will coming soon, so stay tuned!</strong>

<h2 id="quick-start">🚀 Quick Start</h2>

<h3>Preparation</h3>
Some preparation:

- CUDA 12.1 and above, if you didn't have it yet, you may install from [here](https://developer.nvidia.com/cuda-downloads).

  <!-- ```
  export PATH=/usr/local/cuda/bin:$PATH
  export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
  export CUDA_PATH=/usr/local/cuda
  ``` -->
- Linux-x86_64 with gcc, g++ and cmake
  ```sh
  sudo apt-get update
  sudo apt-get install gcc g++ cmake ninja-build
  ```
- We recommend using [Conda](https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh) to create a virtual environment with Python=3.11 to run our program.
  ```sh
  conda create --name ktransformers python=3.11
  conda activate ktransformers # you may need to run ‘conda init’ and reopen shell first
  ```

  Download source code:
  ```sh
  git clone https://github.com/kvcache-ai/ktransformers.git
  cd ktransformers
  git submodule init
  git submodule update
  ```

<h3>Local Chat</h3>
We provide a simple command-line local chat Python script that you can run for testing. 

  > Note that this is a very simple test tool only support one round chat without any memory about last input, if you want to try full ability of the model, you may go to [RESTful API and Web UI](#id_666). We use the DeepSeek-V2-Lite-Chat-GGUF model as an example here. But we alse support other models, you can replace it with any other model that you want to test. 

<h4>Install</h4>

```sh
bash install.sh
```

<h4>Run Example</h4>

```shell
# Begin from root of your cloned repo!
# Begin from root of your cloned repo!!
# Begin from root of your cloned repo!!! 

# Download mzwing/DeepSeek-V2-Lite-Chat-GGUF from huggingface
mkdir DeepSeek-V2-Lite-Chat-GGUF
cd DeepSeek-V2-Lite-Chat-GGUF

wget https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/resolve/main/DeepSeek-V2-Lite-Chat.Q4_K_M.gguf -O DeepSeek-V2-Lite-Chat.Q4_K_M.gguf

cd .. # Move to repo's root dir

# Start local chat
python  ktransformers/local_chat.py --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF

# If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:
# GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite
# python  ktransformers/local_chat.py --model_path ./DeepSeek-V2-Lite --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF
```


It features the following arguments:

- `--model_path` (required): Name of the model (such as "deepseek-ai/DeepSeek-V2-Lite-Chat" which will automatically download configs from [Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite)). Or if you already got local files  you may directly use that path to initialize the model.  
  >Note: <strong>.safetensors</strong> files are not required in the directory. We only need config files to build model and tokenizer.
- `--gguf_path` (required): Path of a directory containing GGUF files which could that can be downloaded from [Hugging Face](https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/tree/main) (we only support q4_k_m and q8_0 for now, more formats are coming soon).
- `--optimize_rule_path` (required except for Qwen2Moe and DeepSeek-V2): Path of YAML file containing optimize rules. There are two rule files pre-written in the [ktransformers/optimize/optimize_rules](ktransformers/optimize/optimize_rules) directory for optimizing DeepSeek-V2 and Qwen2-57B-A14, two SOTA MoE models.
- `--max_new_tokens`: Int (default=1000). Maximum number of new tokens to generate.
- `--cpu_infer`: Int (default=10). The number of CPUs used for inference. Should ideally be set to the (total number of cores - 2).

<h3 id="supported-model"> Supported Model</h3>

| Model Name | Model Size | VRAM | Minimum DRAM | Recommended DRAM |
| ----  | ---- | ---- | ---- | ---- |
| DeepSeek-V2-q4_k_m | 133G | 24G | 136G | 192G |
| Qwen2-57B-A14B-Instruct-q4_k_m | 33G | 8G | 34G | 64G |
| DeepSeek-V2-Lite-q4_k_m | 9.7G | 3G | 13G | 16G |


More will come soon. Please let us know which models you are most interested in. 

Be aware that you need to be subject to their corresponding model licenses when using [DeepSeek](https://huggingface.co/deepseek-ai/DeepSeek-V2/blob/main/LICENSE) and [QWen](https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE).

<details>
  <summary>Click To Show how to run other examples</summary>


* Qwen2-57B

```sh
pip install flash_attn # For Qwen2

mkdir Qwen2-57B-GGUF && cd Qwen2-57B-GGUF

wget https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct-GGUF/resolve/main/qwen2-57b-a14b-instruct-q4_k_m.gguf?download=true -O qwen2-57b-a14b-instruct-q4_k_m.gguf

cd ..

python ktransformers/local_chat.py --model_name Qwen/Qwen2-57B-A14B-Instruct --gguf_path ./Qwen2-57B-GGUF

# If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:
# GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct
# python  ktransformers/local_chat.py --model_path ./Qwen2-57B-A14B-Instruct --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF
```

* DeepseekV2
```sh
mkdir DeepSeek-V2-Chat-0628-GGUF && cd DeepSeek-V2-Chat-0628-GGUF
# Download weights
wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00001-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00001-of-00004.gguf
wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00002-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00002-of-00004.gguf
wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00003-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00003-of-00004.gguf
wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00004-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00004-of-00004.gguf

cd ..

python ktransformers/local_chat.py --model_name deepseek-ai/DeepSeek-V2-Chat-0628 --gguf_path ./DeepSeek-V2-Chat-0628-GGUF

# If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:
# GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat-0628
# python  ktransformers/local_chat.py --model_path ./DeepSeek-V2-Chat-0628 --gguf_path ./DeepSeek-V2-Chat-0628-GGUF
```

| model name | weights download link |
|----------|----------|
| Qwen2-57B | [Qwen2-57B-A14B-gguf-Q4K-M](https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct-GGUF/tree/main) |
| DeepseekV2-coder |[DeepSeek-Coder-V2-Instruct-gguf-Q4K-M](https://huggingface.co/LoneStriker/DeepSeek-Coder-V2-Instruct-GGUF/tree/main) |
| DeepseekV2-chat |[DeepSeek-V2-Chat-gguf-Q4K-M](https://huggingface.co/bullerwins/DeepSeek-V2-Chat-0628-GGUF/tree/main) |
| DeepseekV2-lite | [DeepSeek-V2-Lite-Chat-GGUF-Q4K-M](https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/tree/main) |

</details>

<!-- pin block for jump -->
<span id='id_666'> 

<h3>RESTful API and Web UI</h3>

<h4>Install</h4>

[Optional] If you want to run with website, please [compile the website](./doc/en/api/server/website.md) before execute ```pip install .```
  
Install ktransformers with source.
```
pip install -r requirements-local_chat.txt
pip install . --no-build-isolation
```

Start without website:

```sh
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF --port 10002
```
Start with website:
```sh
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF  --port 10002 --web True
```
Or you want to start server with transformers, the model_path should include safetensors
```bash
ktransformers --type transformers --model_path /mnt/data/model/Qwen2-0.5B-Instruct --port 10002 --web True
```

Access website with url [http://localhost:10002/web/index.html#/chat](http://localhost:10002/web/index.html#/chat) :

<p align="center">
  <picture>
    <img alt="Web UI" src="https://github.com/user-attachments/assets/a8eca392-e948-4706-ba9c-743142d8a464" width=80%>
  </picture>
</p>

More information about the RESTful API server can be found [here](doc/en/api/server/server.md). You can also find an example of integrating with Tabby [here](doc/en/api/server/tabby.md).


<h2 id="tutorial">📃 Brief Injection Tutorial</h2>
At the heart of KTransformers is a user-friendly, template-based injection framework. 
This allows researchers to easily replace original torch modules with optimized variants. It also simplifies the process of combining multiple optimizations, allowing the exploration of their synergistic effects. 

</br>
<p align="center">
  <picture>
    <img alt="Inject-Struction" src="https://github.com/user-attachments/assets/b922180e-3e73-4b62-b5a0-5ac98d7052c5" width=50%>
  </picture>
</p>

Given that vLLM already serves as a great framework for large-scale deployment optimizations, KTransformers is particularly focused on local deployments that are constrained by limited resources. We pay special attention to heterogeneous computing opportunities, such as GPU/CPU offloading of quantized models. For example, we support the efficient <a herf="https://github.com/Mozilla-Ocho/llamafile/tree/main">Llamafile</a> and <a herf="https://github.com/IST-DASLab/marlin">Marlin</a> kernels for CPU and GPU, respectively. More details can be found <a herf="doc/en/operators/llamafile.md">here</a>.

<h3>Example Usage</h3>
To utilize the provided kernels, users only need to create a YAML-based injection template and add the call to `optimize_and_load_gguf` before using the Transformers model.

```python
with torch.device("meta"):
    model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
optimize_and_load_gguf(model, optimize_rule_path, gguf_path, config)
...
generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens=1000)
```

In this example, the AutoModel is first initialized on the meta device to avoid occupying any memory resources. Then, `optimize_and_load_gguf` iterates through all sub-modules of the model, matches rules specified in your YAML rule file, and replaces them with advanced modules as specified.

After injection, the original `generate` interface is available, but we also provide a compatible `prefill_and_generate` method, which enables further optimizations like CUDAGraph to improve generation speed.

<h3>YAML Template</h3>
Below is an example of a YAML template for replacing all original Linear modules with Marlin, an advanced 4-bit quantization kernel.

```yaml
- match:
    name: "^model\\.layers\\..*$"  # regular expression 
    class: torch.nn.Linear  # only match modules matching name and class simultaneously
  replace:
    class: ktransformers.operators.linear.KTransformerLinear  # optimized Kernel on quantized data types
    device: "cpu"   # which devices to load this module when initializing
    kwargs:
      generate_device: "cuda"
      generate_linear_type: "QuantizedLinearMarlin"
```

Each rule in the YAML file has two parts: `match` and `replace`. The `match` part specifies which module should be replaced, and the `replace` part specifies the module to be injected into the model along with the initialization keywords.

You can find example rule templates for optimizing DeepSeek-V2 and Qwen2-57B-A14, two SOTA MoE models, in the [ktransformers/optimize/optimize_rules](ktransformers/optimize/optimize_rules) directory. These templates are used to power the `local_chat.py` demo.

A detailed description of the injection using DeepSeek-V2 as an example is given [here](doc/en/deepseek-v2-injection.md).

<h2 id="ack">Acknowledgment and Contributors</h2>

The development of KTransformer is based on the flexible and versatile framework provided by Transformers. We also benefit from advanced kernels such as GGUF/GGML, Llamafile, and Marlin. We are planning to contribute back to the community by upstreaming our modifications.

KTransformer is actively maintained and developed by contributors from the <a href="https://madsys.cs.tsinghua.edu.cn/">MADSys group</a> at Tsinghua University and members from <a href="http://approaching.ai/">Approaching.AI</a>. We welcome new contributors to join us in making KTransformer faster and easier to use.