cooperative_gemm_common.hpp 18.2 KB
Newer Older
zhoux's avatar
zhoux committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/***************************************************************************************************
 * Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved.
 * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/

#pragma once

#include "hytlass_unit_test.h"
#include "hytlass/util/reference/host/tensor_compare.h"

#include <iostream>

#include <thrust/host_vector.h>
#include <thrust/device_vector.h>

#include <hute/tensor.hpp>

using namespace hute;

template<class ALayout,
         class BLayout,
         class CLayout,
         class SMemALayout,
         class SMemBLayout,
         class SMemCLayout,
         class SmemCopyOpA,
         class SmemCopyOpB,
         class SmemCopyOpC,
         uint32_t ThreadBlockSize,
         class TiledMma,
         uint32_t CopyMaxVecBits,
         class TA,
         class TB,
         class TC,
         class Alpha,
         class Beta,
         class ALoadTransform,
         class BLoadTransform,
         class CLoadTransform,
         class CStoreTransform>
__launch_bounds__(ThreadBlockSize) __global__ void
cooperative_gemm_kernel(TA const*   a,
                        TB const*   b,
                        TC*         c,
                        TC*         c_out,
                        Alpha const alpha,
                        Beta  const beta,
                        ALoadTransform  a_load_transform,
                        BLoadTransform  b_load_transform,
                        CLoadTransform  c_load_transform,
                        CStoreTransform c_store_transform)
{
    using namespace hute;

    Tensor g_a_tensor     = make_tensor(make_gmem_ptr(a), ALayout{});
    Tensor g_b_tensor     = make_tensor(make_gmem_ptr(b), BLayout{});
    Tensor g_c_tensor     = make_tensor(make_gmem_ptr(c), CLayout{});
    Tensor g_c_out_tensor = make_tensor(make_gmem_ptr(c_out), CLayout{});

    constexpr uint32_t copy_max_vec_bytes = CopyMaxVecBits / 8;

    extern __shared__ float4 smem_buf[];
    auto* smem_ptr = reinterpret_cast<unsigned char*>(smem_buf);
    auto* smem_ptr_a = smem_ptr;
    auto* smem_ptr_b = smem_ptr_a + round_up((sizeof(TA) * cosize(SMemALayout {})), copy_max_vec_bytes);
    auto* smem_ptr_c = smem_ptr_b + round_up((sizeof(TB) * cosize(SMemBLayout {})), copy_max_vec_bytes);

    Tensor s_a_tensor = make_tensor(make_smem_ptr<TA>(smem_ptr_a), SMemALayout{});
    Tensor s_b_tensor = make_tensor(make_smem_ptr<TB>(smem_ptr_b), SMemBLayout{});
    Tensor s_c_tensor = make_tensor(make_smem_ptr<TC>(smem_ptr_c), SMemCLayout{});

    cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_a_tensor, s_a_tensor);
    cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_b_tensor, s_b_tensor);
    cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, g_c_tensor, s_c_tensor);

    cp_async_fence();
    cp_async_wait<0>();
    __syncthreads();

    TiledMma tiled_mma;
    cooperative_gemm<SmemCopyOpA, SmemCopyOpB, SmemCopyOpC>(
      threadIdx.x, tiled_mma,
      alpha, s_a_tensor, s_b_tensor, beta, s_c_tensor,
      a_load_transform, b_load_transform, c_load_transform, c_store_transform
    );
    __syncthreads();

    cooperative_copy<ThreadBlockSize, CopyMaxVecBits>(threadIdx.x, s_c_tensor, g_c_out_tensor);
}

template<class ALayout, // logical shape (M, K)
         class BLayout, // logical shape (N, K)
         class CLayout, // logical shape (M, N)
         class SMemALayout, // logical shape (M, K)
         class SMemBLayout, // logical shape (N, K)
         class SMemCLayout, // logical shape (M, N)
         class SmemCopyOpA,
         class SmemCopyOpB,
         class SmemCopyOpC,
         uint32_t ThreadBlockSize,
         class TiledMma,
         uint32_t CopyMaxVecBits,
         class TA,
         class TB,
         class TC,
         class ALoadTransform  = hute::identity,
         class BLoadTransform  = hute::identity,
         class CLoadTransform  = hute::identity,
         class CStoreTransform = hute::identity>
void test_cooperative_gemm(ALoadTransform  const& a_load_transform  = {},
                           BLoadTransform  const& b_load_transform  = {},
                           CLoadTransform  const& c_load_transform  = {},
                           CStoreTransform const& c_store_transform = {})
{
  using gmem_a_layout_t = ALayout;
  using gmem_b_layout_t = BLayout;
  using gmem_c_layout_t = CLayout;

  using smem_a_layout_t = SMemALayout;
  using smem_b_layout_t = SMemBLayout;
  using smem_c_layout_t = SMemCLayout;

  static_assert(size<0>(gmem_a_layout_t{}) == size<0>(gmem_c_layout_t{}));  // AM == CM
  static_assert(size<0>(gmem_b_layout_t{}) == size<1>(gmem_c_layout_t{}));  // BN == CN
  static_assert(size<1>(gmem_a_layout_t{}) == size<1>(gmem_b_layout_t{}));  // AK == BK

  static_assert(size<0>(smem_a_layout_t{}) == size<0>(smem_c_layout_t{}));  // AM == CM
  static_assert(size<0>(smem_b_layout_t{}) == size<1>(smem_c_layout_t{}));  // BN == CN
  static_assert(size<1>(smem_a_layout_t{}) == size<1>(smem_b_layout_t{}));  // AK == BK

  static_assert(hute::size(gmem_a_layout_t {}) == hute::size(smem_a_layout_t {}));
  static_assert(hute::size(gmem_b_layout_t {}) == hute::size(smem_b_layout_t {}));
  static_assert(hute::size(gmem_c_layout_t {}) == hute::size(smem_c_layout_t {}));

#if 0
  print("   "); print("gmem_a:    "); print(gmem_a_layout_t{}); print("\n");
  print("   "); print("smem_a:    "); print(smem_a_layout_t{}); print("\n");
  print("   "); print("gmem_b:    "); print(gmem_b_layout_t{}); print("\n");
  print("   "); print("smem_b:    "); print(smem_b_layout_t{}); print("\n");
  print("   "); print("gmem_c:    "); print(gmem_c_layout_t{}); print("\n");
  print("   "); print("smem_c:    "); print(smem_c_layout_t{}); print("\n");
  print("   "); print("threads: "); print(ThreadBlockSize); print("\n");
#endif

  const auto alpha = static_cast<TC>(1.1);
  const auto beta  = static_cast<TC>(1.2);

  thrust::host_vector<TA> h_a(cosize(gmem_a_layout_t{}));
  thrust::host_vector<TB> h_b(cosize(gmem_b_layout_t{}));
  thrust::host_vector<TC> h_c(cosize(gmem_c_layout_t{}));
  thrust::host_vector<TC> h_c_out(cosize(gmem_c_layout_t{}));

  auto h_a_tensor = make_tensor(h_a.data(), gmem_a_layout_t{});
  auto h_b_tensor = make_tensor(h_b.data(), gmem_b_layout_t{});
  auto h_c_tensor = make_tensor(h_c.data(), gmem_c_layout_t{});
  size_t max_size   = std::max<size_t>({static_cast<size_t>(size(gmem_a_layout_t {})),
                                        static_cast<size_t>(size(gmem_b_layout_t {})),
                                        static_cast<size_t>(size(gmem_c_layout_t {}))});
  for (size_t i = 0; i < max_size; ++i) {
    double di = static_cast<double>(i);
    if(i < size(gmem_a_layout_t{})) {
      h_a_tensor(i) = static_cast<TA>(di / size(gmem_a_layout_t{}));
    }
    if(i < size(gmem_b_layout_t{})) {
      h_b_tensor(i) = static_cast<TA>(di / size(gmem_a_layout_t{}));
    }
    if(i < size(gmem_c_layout_t{})) {
      h_c_tensor(i) = static_cast<TC>((di*di) / size(gmem_a_layout_t{}));
    }
  }

  thrust::device_vector<TA> d_a(h_a);
  thrust::device_vector<TB> d_b(h_b);
  thrust::device_vector<TC> d_c(h_c);
  thrust::device_vector<TC> d_c_out(h_c_out.size(), TC(float(-1)));

  const size_t shared_memory_size =
    (sizeof(TA) * h_a.size()) + (sizeof(TB) * h_b.size()) + (sizeof(TC) * h_c.size());
  auto kernel = cooperative_gemm_kernel<
    gmem_a_layout_t, gmem_b_layout_t, gmem_c_layout_t,
    smem_a_layout_t, smem_b_layout_t, smem_c_layout_t,
    SmemCopyOpA, SmemCopyOpB, SmemCopyOpC,
    ThreadBlockSize, TiledMma, CopyMaxVecBits,
    TA, TB, TC, decltype(alpha), decltype(beta),
    ALoadTransform, BLoadTransform, CLoadTransform, CStoreTransform
  >;
  ASSERT_EQ(hipFuncSetAttribute(reinterpret_cast<const void*>(kernel), hipFuncAttributeMaxDynamicSharedMemorySize, static_cast<int>(shared_memory_size)), 0);

  kernel<<<1, ThreadBlockSize, shared_memory_size>>>(
    thrust::raw_pointer_cast(d_a.data()),
    thrust::raw_pointer_cast(d_b.data()),
    thrust::raw_pointer_cast(d_c.data()),
    thrust::raw_pointer_cast(d_c_out.data()),
    alpha,
    beta,
    a_load_transform,
    b_load_transform,
    c_load_transform,
    c_store_transform
  );
  hipError_t result = hipDeviceSynchronize();
  if (result != hipSuccess) {
    hipError_t error = hipGetLastError();
    FAIL() << "Error at kernel sync: " << hipGetErrorString(error) << "\n";
  }

  thrust::host_vector<TC> h_c_ref(h_c.size(), static_cast<TC>(0.0));
  auto h_c_ref_tensor = make_tensor(h_c_ref.data(), gmem_c_layout_t{});
  // A * B
  for (int k = 0; k < size<1>(h_a_tensor); k++) {
    for (int m = 0; m < size<0>(h_a_tensor); m++) {
      for (int n = 0; n < size<0>(h_b_tensor); n++) {
          const auto a_value      = a_load_transform(h_a_tensor(m, k));
          const auto b_value      = b_load_transform(h_b_tensor(n, k));
          const auto a_value_fp64 = static_cast<double>(a_value);
          const auto b_value_fp64 = static_cast<double>(b_value);
          h_c_ref_tensor(m, n) += static_cast<TC>(a_value_fp64 * b_value_fp64);
      }
    }
  }
  // C = A*B + C
  for (int i = 0; i < size(h_c_ref_tensor); i++) {
    const auto ab_value_fp64 = static_cast<double>(h_c_ref_tensor(i));
    const auto c_value_fp64  = static_cast<double>(c_load_transform(h_c_tensor(i)));
    h_c_ref_tensor(i)        = c_store_transform(static_cast<TC>(alpha * ab_value_fp64 + beta * c_value_fp64));
  }

  h_c_out = d_c_out;
  auto h_c_out_tensor = make_tensor(h_c_out.data(), gmem_c_layout_t{});
  for (int i = 0; i < size(h_c_ref_tensor); i++) {
    double h_c_ref_i = h_c_ref_tensor(i);
    double h_c_out_i = h_c_out_tensor(i);
    double epsilon(0.1f);
    double nonzero_floor(std::numeric_limits<double>::min());
    bool passed = hytlass::relatively_equal(h_c_out_i, h_c_ref_i, epsilon, nonzero_floor);
    ASSERT_TRUE(passed) << i << " - result:" << h_c_out_i << " expected:" << h_c_ref_i;
  }
}

template<uint32_t M,
         uint32_t N,
         uint32_t K,
         uint32_t ThreadBlockSize,
         class TiledMMAType,
         uint32_t CopyMaxVecBits,
         class TA,
         class TB,
         class TC,
         class ALoadTransform  = hute::identity,
         class BLoadTransform  = hute::identity,
         class CLoadTransform  = hute::identity,
         class CStoreTransform = hute::identity>
void test_cooperative_gemm_col_major_layout(ALoadTransform  const& a_load_transform  = {},
                                            BLoadTransform  const& b_load_transform  = {},
                                            CLoadTransform  const& c_load_transform  = {},
                                            CStoreTransform const& c_store_transform = {})
{
  using gmem_a_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<K> {})));
  using gmem_b_layout_t = decltype(make_layout(make_shape(Int<N> {}, Int<K> {}), GenRowMajor{}));
  using gmem_c_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<N> {})));

  using smem_a_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<K> {})));
  using smem_b_layout_t = decltype(make_layout(make_shape(Int<N> {}, Int<K> {}), GenRowMajor{}));
  using smem_c_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<N> {})));

  test_cooperative_gemm<gmem_a_layout_t,
                        gmem_b_layout_t,
                        gmem_c_layout_t,
                        smem_a_layout_t,
                        smem_b_layout_t,
                        smem_c_layout_t,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TA>>,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TB>>,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TC>>,
                        ThreadBlockSize,
                        TiledMMAType,
                        CopyMaxVecBits,
                        TA,
                        TB,
                        TC>(a_load_transform, b_load_transform, c_load_transform, c_store_transform);
}

template<uint32_t M,
         uint32_t N,
         uint32_t K,
         uint32_t ThreadBlockSize,
         class TiledMMAType,
         class T,
         class ALoadTransform  = hute::identity,
         class BLoadTransform  = hute::identity,
         class CLoadTransform  = hute::identity,
         class CStoreTransform = hute::identity>
void test_cooperative_gemm_col_major_layout(ALoadTransform  const& a_load_transform  = {},
                                            BLoadTransform  const& b_load_transform  = {},
                                            CLoadTransform  const& c_load_transform  = {},
                                            CStoreTransform const& c_store_transform = {})
{
  test_cooperative_gemm_col_major_layout<M, N, K, ThreadBlockSize, TiledMMAType, hute::sizeof_bits_v<T>, T, T, T>(
      a_load_transform, b_load_transform, c_load_transform, c_store_transform);
}

template<class SMemAAtomLayout,
         class SMemBAtomLayout,
         class SMemCAtomLayout,
         uint32_t M,
         uint32_t N,
         uint32_t K,
         uint32_t ThreadBlockSize,
         class TiledMMAType,
         uint32_t CopyMaxVecBits,
         class TA,
         class TB,
         class TC,
         class ALoadTransform  = hute::identity,
         class BLoadTransform  = hute::identity,
         class CLoadTransform  = hute::identity,
         class CStoreTransform = hute::identity>
void test_cooperative_gemm_col_major_layout(ALoadTransform  const& a_load_transform  = {},
                                            BLoadTransform  const& b_load_transform  = {},
                                            CLoadTransform  const& c_load_transform  = {},
                                            CStoreTransform const& c_store_transform = {})
{
  using gmem_a_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<K> {})));
  using gmem_b_layout_t = decltype(make_layout(make_shape(Int<N> {}, Int<K> {}), GenRowMajor{}));
  using gmem_c_layout_t = decltype(make_layout(make_shape(Int<M> {}, Int<N> {})));

  using smem_a_atom_layout_t = SMemAAtomLayout;
  using smem_a_layout_t = decltype(tile_to_shape(
      smem_a_atom_layout_t{},
      make_shape(shape<0>(gmem_a_layout_t{}), shape<1>(gmem_a_layout_t{})))
  );

  using smem_b_atom_layout_t = SMemBAtomLayout;
  using smem_b_layout_t = decltype(tile_to_shape(
      smem_b_atom_layout_t{},
      make_shape(shape<0>(gmem_b_layout_t{}), shape<1>(gmem_b_layout_t{})))
  );

  using smem_c_atom_layout_t = SMemCAtomLayout;
  using smem_c_layout_t = decltype(tile_to_shape(
      smem_c_atom_layout_t{},
      make_shape(shape<0>(gmem_c_layout_t{}), shape<1>(gmem_c_layout_t{})))
  );

  test_cooperative_gemm<gmem_a_layout_t,
                        gmem_b_layout_t,
                        gmem_c_layout_t,
                        smem_a_layout_t,
                        smem_b_layout_t,
                        smem_c_layout_t,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TA>>,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TB>>,
                        AutoVectorizingCopyWithAssumedAlignment<sizeof_bits_v<TC>>,
                        ThreadBlockSize,
                        TiledMMAType,
                        CopyMaxVecBits,
                        TA,
                        TB,
                        TC>(a_load_transform, b_load_transform, c_load_transform, c_store_transform);
}

template<class SMemAAtomLayout,
         class SMemBAtomLayout,
         class SMemCAtomLayout,
         uint32_t M,
         uint32_t N,
         uint32_t K,
         uint32_t ThreadBlockSize,
         class TiledMMAType,
         class T,
         class ALoadTransform  = hute::identity,
         class BLoadTransform  = hute::identity,
         class CLoadTransform  = hute::identity,
         class CStoreTransform = hute::identity>
void test_cooperative_gemm_col_major_layout(ALoadTransform  const& a_load_transform  = {},
                                            BLoadTransform  const& b_load_transform  = {},
                                            CLoadTransform  const& c_load_transform  = {},
                                            CStoreTransform const& c_store_transform = {})
{
  test_cooperative_gemm_col_major_layout<SMemAAtomLayout,
                                         SMemBAtomLayout,
                                         SMemCAtomLayout,
                                         M,
                                         N,
                                         K,
                                         ThreadBlockSize,
                                         TiledMMAType,
                                         hute::sizeof_bits_v<T>,
                                         T,
                                         T,
                                         T>(a_load_transform, b_load_transform, c_load_transform, c_store_transform);
}