profiler_helper.py 12.3 KB
Newer Older
zhoux's avatar
zhoux committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#################################################################################################
# Copyright (c) 2023 - 2025 Hygon Information Technology Co., Ltd. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################################
import numpy as np
import pandas as pd
import argparse
import os
import logging
from pathlib import Path
import subprocess

def operation_check(value):
  value = str(value)
  if not ((value.lower() == "gemm" or value.lower() == "conv2d")):
      raise argparse.ArgumentTypeError(f"only gemm and conv2d operations are supported")
  return value

def parseArgs():
  parser = argparse.ArgumentParser(description ="Extract best kernel from profiler",
                                     epilog =
'''
EXAMPLE:
python3 profiler_helper.py --input=params_nt.csv --output=hytlass_nt --start_idx=2
python3 profiler_helper.py --input=params_res50_fprop.csv --output=res50_fprop
''',
                                    formatter_class=argparse.RawDescriptionHelpFormatter)

  parser.add_argument("-I", "--input", type=str, help="Parameter file for profiler analysis", required=True)

  parser.add_argument("-R", "--start_idx", type=int, default=0, help="Execution starts from the first line of the parameter file")

  parser.add_argument("-O", "--output", type=str, default= "best_kernel", help="Best kernel saving path")

  args = parser.parse_args()

  return args



def init_csv_header(op: str, output_path: str):
  if not hasattr(init_csv_header, "header_line"):
    init_csv_header.header_line = ""

  if not init_csv_header.header_line:
    if not op:
      raise ValueError(f"Do not provide operation in input csv\n")
    if op.lower() == "gemm":
      init_csv_header.header_line = (
          "Problem,Provider,OperationKind,Operation,Disposition,Status,gemm_kind,m,n,k,lda,ldb,ldc,A,B,C,D,alpha,beta,"
          "split_k_mode,split_k_slices,batch_count,raster_order,stagger_k,stagger_k_stride,swizzle_size,op_class,accum,cta_m,cta_n,cta_k,"
          "cluster_m,cluster_n,cluster_k,stages,warps_m,warps_n,warps_k,inst_m,inst_n,inst_k,min_cc,max_cc,Bytes,"
          "Flops,Flops/Byte,Runtime,GB/s,GFLOPs\n"
      )
    elif op.lower() == "conv2d":
      init_csv_header.header_line = (
          "Problem,Provider,OperationKind,Operation,Disposition,Status,conv_kind,n,h,w,c,k,r,s,p,q,g,pad_h,pad_w,"
          "stride_h,stride_w,dilation_h,dilation_w,Activation,Filter,Output,conv_mode,iterator_algorithm,alpha,beta,"
          "split_k_mode,split_k_slices,eq_gemm_provider,op_class,accum,cta_m,cta_n,cta_k,cluster_m,cluster_n,cluster_k,"
          "stages,warps_m,warps_n,warps_k,inst_m,inst_n,inst_k,min_cc,max_cc,Bytes,Flops,Flops/Byte,Runtime,GB/s,GFLOPs\n"
      )
    else:
      raise ValueError(f"Unsupported operation type: {op}")

    if not (os.path.exists(output_path) and os.path.getsize(output_path) > 0):
      with open(output_path, "w") as best_kernel_file:
        if op.lower() == "gemm":
          best_kernel_file.write(init_csv_header.header_line)
        elif op.lower():
          best_kernel_file.write(init_csv_header.header_line)

  return init_csv_header.header_line


def main():
  args = parseArgs()

  current_dir = os.getcwd()

  params_file = f"{current_dir}/{args.input}"
  # 保存的路径
  save_path = f"{current_dir}/profiler_result/{args.output}"
  # profiler 生成的文件路径
  detail_profile_result_path_name = f"{save_path}/detail/profiler_gens"
  # 标准错误输出路径
  detail_stderr_path_name = f"{save_path}/detail/stderr"
  # 提取的kernel路径
  best_kernel_file_name = f"{save_path}/best_kernel.csv"

  folder_path = Path(save_path)
  folder_path.mkdir(parents=True, exist_ok=True)

  detail_stdout_path = Path(detail_profile_result_path_name)
  detail_stdout_path.mkdir(parents=True, exist_ok=True)

  detail_stderr_path = Path(detail_stderr_path_name)
  detail_stderr_path.mkdir(parents=True, exist_ok=True)

  hytlass_profiler = "../../build/tools/profiler/hytlass_profiler"

  logger = logging.getLogger("profiler_helper_logger")
  logger.setLevel(logging.DEBUG)

  file_handler = logging.FileHandler(f"{save_path}/profiler_helper.log", mode='a', encoding='utf-8')
  file_handler.setLevel(logging.DEBUG)

  console_handler = logging.StreamHandler()
  console_handler.setLevel(logging.DEBUG)

  logger.addHandler(file_handler)
  logger.addHandler(console_handler)

  if not os.path.exists(params_file):
      logger.fatal(f"input csv file do not found at {params_file}")
      raise FileNotFoundError(f"input csv file: {params_file} do not found")    

  if not os.path.exists(hytlass_profiler):
      logger.fatal(f"hytlass profiler do not found at {hytlass_profiler}")
      raise FileNotFoundError(f"hytlass_profiler: {hytlass_profiler} do not found")

  total_lines = 0
  op = ""

  with open(params_file, "r") as f:
    total_lines = sum(1 for line in f)
  total_data_lines = total_lines - 1 

  current_line = 0

  for chunk in pd.read_csv(params_file, chunksize=1, skipinitialspace=True):
    current_line += 1

    if args.start_idx > current_line :
        continue

    chunk.columns = chunk.columns.str.strip()
    row_dict: dict = chunk.iloc[0].to_dict()
    profiler_args: list = []
    for key, value in row_dict.items():
      if key == "output":
          print(f"op is {op}")
      profiler_args.append(f"--{key}={value} ")

    op = row_dict.get("operation", "")
    # csv 提供的 operation 需要和命令行传入的对应
    try:
      init_csv_header(op, best_kernel_file_name)
    except Exception as e:
      logger.fatal(f"{e}")

    output_file = f"{detail_profile_result_path_name}/report_{current_line}.csv"

    profiler_args.append(f"--output={output_file}")
        
    # profiler 会在生成的文件名中添加 operation 
    output_file = output_file.replace('.csv', f'.{op.lower()}.csv')

    disable_verification = row_dict.get("verification-enabled", "true") == "false"

    command = [hytlass_profiler] + profiler_args
    logger.info("+===============================================================================================================================+")
    logger.info(f"exec profiler [{current_line}/{total_data_lines}]")
    logger.info(f"{' '.join(command)}")

    profiler_status = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True)


    # profiler 异常退出
    if profiler_status.returncode != 0 :
      logger.error(profiler_status.stderr)
      logger.error(f"status: [faild: {profiler_status.returncode}]")

      with open(f"{detail_stderr_path_name}/profier_stderr_{current_line}.csv", "w", encoding='utf-8') as _file:
              _file.write(profiler_status.stderr)

      with open(best_kernel_file_name, "a") as best_kernel_file:
        if op.lower() == "gemm":
          # 异常退出时,从 csv 文件中获取数据,或是使用 profiler 的默认值
          _m = row_dict.get("m", 1024)
          _n = row_dict.get("n", 1024)
          _k = row_dict.get("k", 1024)
          best_kernel_file.write(f"-,hytlass,Gemm,-,failed,failed,-,{_m},{_n},{_k},-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-\n")
        elif op.lower() == "conv2d":
          _n = row_dict.get("n", 1)
          _h = row_dict.get("h", 16)
          _w = row_dict.get("w", 16)
          _c = row_dict.get("c", 64)
          _k = row_dict.get("k", 64)
          _r = row_dict.get("r", 3)
          _s = row_dict.get("s", 3)
          _g = row_dict.get("g", 1)
          _pad_h = row_dict.get("pad_h", 1)
          _pad_w = row_dict.get("pad_w", 1)
          _stride_h = row_dict.get("stride_h", 1)
          _stride_w = row_dict.get("stride_w", 1)
          _dilation_h = row_dict.get("dilation_h", 1)
          _dilation_w = row_dict.get("dilation_w", 1)

          _p = row_dict.get("p", (_h + 2 * _pad_h - ((_r - 1) * _dilation_h + 1)) / (_stride_h) + 1)
          _q = row_dict.get("q", (_w + 2 * _pad_w - ((_s - 1) * _dilation_w + 1)) / (_stride_w) + 1)

          best_kernel_file.write(f"-,hytlass,Conv2d,-,failed,failed,-,{_n},{_h},{_w},{_c},{_k},{_r},{_s},{_p},{_q},{_g},{_pad_h},{_pad_w},"+
                                       f"{_stride_h},{_stride_w},{_dilation_h},{_dilation_w},-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-\n")
      continue

    kernel_file = pd.read_csv(output_file)

    # profiler 未生成有效的csv数据
    if kernel_file.empty :
      logger.warning("Failed to generate valid data, possibly because there is no kernel available")

      # best_kernel_file = open(best_kernel_file_name, "a")

      with open(best_kernel_file_name, "a") as best_kernel_file:
        if op.lower() == "gemm":
          _m = row_dict.get("m", 1024)
          _n = row_dict.get("n", 1024)
          _k = row_dict.get("k", 1024)
          best_kernel_file.write(f"-,hytlass,Gemm,-,failed,no_res,-,{_m},{_n},{_k},-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-\n")
        elif op.lower() == "conv2d":
          _n = row_dict.get("n", 1)
          _h = row_dict.get("h", 16)
          _w = row_dict.get("w", 16)
          _c = row_dict.get("c", 64)
          _k = row_dict.get("k", 64)
          _r = row_dict.get("r", 3)
          _s = row_dict.get("s", 3)
          _g = row_dict.get("g", 1)
          _pad_h = row_dict.get("pad_h", 1)
          _pad_w = row_dict.get("pad_w", 1)
          _stride_h = row_dict.get("stride_h", 1)
          _stride_w = row_dict.get("stride_w", 1)
          _dilation_h = row_dict.get("dilation_h", 1)
          _dilation_w = row_dict.get("dilation_w", 1)

          _p = row_dict.get("p", (_h + 2 * _pad_h - ((_r - 1) * _dilation_h + 1)) / (_stride_h) + 1)
          _q = row_dict.get("q", (_w + 2 * _pad_w - ((_s - 1) * _dilation_w + 1)) / (_stride_w) + 1)

          best_kernel_file.write(f"-,hytlass,Conv2d,-,failed,no_res,-,{_n},{_h},{_w},{_c},{_k},{_r},{_s},{_p},{_q},{_g},{_pad_h},{_pad_w}," + 
                                        f"{_stride_h},{_stride_w},{_dilation_h},{_dilation_w},-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-\n")
      continue

    # 检查正确性是否通过
    if not disable_verification:
      # 未验证不属于错误
      failed_row = kernel_file[kernel_file["Disposition"] == "incorrect"]
      if not failed_row.empty:
        logger.error("kernel result errors")
        logger.error(failed_row)

    # 将性能最佳的行插入到 best kernel 中,并打印所在列
    best_row = kernel_file.loc[kernel_file["GFLOPs"].idxmax()]

    best_row_df = pd.DataFrame([best_row], index=[0])

    best_row_df.to_csv(best_kernel_file_name, mode='a', index=False, header=False, encoding='utf-8', float_format='%.3f')

    logger.info(f"best kernel: {best_row_df['Operation'].values[0]}")
    logger.info(f"runtime: {round(best_row_df['Runtime'].values[0], 3)}")
    logger.info(f"Gflops: {round(best_row_df['GFLOPs'].values[0], 1)}")
    logger.info(f"status: [success]")

main()