pyg_dataset_lookup_table.py 4.92 KB
Newer Older
zhangwq5's avatar
all  
zhangwq5 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.

from typing import Optional
from torch_geometric.datasets import *
from torch_geometric.data import Dataset
from .pyg_dataset import GraphormerPYGDataset
import torch.distributed as dist

import os.path as osp
import pickle
import torch
from torch_geometric.datasets import ZINC 
from torch_geometric.data import Data


class MyQM7b(QM7b):
    def download(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyQM7b, self).download()
        if dist.is_initialized():
            dist.barrier()

    def process(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyQM7b, self).process()
        if dist.is_initialized():
            dist.barrier()


class MyQM9(QM9):
    def download(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyQM9, self).download()
        if dist.is_initialized():
            dist.barrier()

    def process(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyQM9, self).process()
        if dist.is_initialized():
            dist.barrier()

class MyZINC(ZINC):
    def download(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            pass 
        if dist.is_initialized():
            dist.barrier()

    def process(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            for i, split in enumerate(['train', 'val', 'test']):
                input_path = osp.join(self.raw_dir, f'{split}.pickle')
                
                with open(input_path, 'rb') as f:
                    graphs = pickle.load(f)
                    data_list = []
                    for g in graphs:
                        x = g['atom_type'].to(torch.long).view(-1, 1)
                    
                        bond_info = g['bond_type']
                        y = g['logP_SA_cycle_normalized'].clone().detach().view(1, -1).to(torch.float)
                        edge_index = bond_info[:, :2].t().contiguous().to(torch.long)
                        edge_attr = bond_info[:, 2].to(torch.long)

                        data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y)
                        data.num_nodes = len(x)
                        data_list.append(data)

                if self.pre_filter is not None:
                    data_list = [d for d in data_list if self.pre_filter(d)]

                if self.pre_transform is not None:
                    data_list = [self.pre_transform(d) for d in data_list]
                
                data, slices = self.collate(data_list)
                torch.save((data, slices), self.processed_paths[i])

        if dist.is_initialized():
            dist.barrier()


class MyMoleculeNet(MoleculeNet):
    def download(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyMoleculeNet, self).download()
        if dist.is_initialized():
            dist.barrier()

    def process(self):
        if not dist.is_initialized() or dist.get_rank() == 0:
            super(MyMoleculeNet, self).process()
        if dist.is_initialized():
            dist.barrier()



class PYGDatasetLookupTable:
    @staticmethod
    def GetPYGDataset(dataset_spec: str, seed: int) -> Optional[Dataset]:
        split_result = dataset_spec.split(":")
        if len(split_result) == 2:
            name, params = split_result[0], split_result[1]
            params = params.split(",")
        elif len(split_result) == 1:
            name = dataset_spec
            params = []
        inner_dataset = None
        num_class = 1

        train_set = None
        valid_set = None
        test_set = None

        root = "dataset"
        if name == "qm7b":
            inner_dataset = MyQM7b(root=root)
        elif name == "qm9":
            inner_dataset = MyQM9(root=root)
        elif name == "zinc":
            inner_dataset = MyZINC(root=root)
            train_set = MyZINC(root=root, split="train")
            valid_set = MyZINC(root=root, split="val")
            test_set = MyZINC(root=root, split="test")
        elif name == "moleculenet":
            nm = None
            for param in params:
                name, value = param.split("=")
                if name == "name":
                    nm = value
            inner_dataset = MyMoleculeNet(root=root, name=nm)
        else:
            raise ValueError(f"Unknown dataset name {name} for pyg source.")
        if train_set is not None:
            return GraphormerPYGDataset(
                    None,
                    seed,
                    None,
                    None,
                    None,
                    train_set,
                    valid_set,
                    test_set,
                )
        else:
            return (
                None
                if inner_dataset is None
                else GraphormerPYGDataset(inner_dataset, seed)
            )