Commit d0f07ff7 authored by Rick Ho's avatar Rick Ho
Browse files

basic megatron support frame

parent 832385c2
from torch import nn
from .moe import FFFN
def create_moe_mlp(args):
assert args.num_experts % args.model_parallel_size == 0, 'Num experts should be multiple of mp size'
num_experts = args.num_experts // args.model_parallel_size
fmoe = FFFN(num_experts, in_feat=args.hidden_size,
hidden_feat=args.hidden_size * 4, out_feat=args.hidden_size,
world_size = args.model_parallel_size)
return fmoe
...@@ -26,6 +26,23 @@ class FMoE(nn.Module): ...@@ -26,6 +26,23 @@ class FMoE(nn.Module):
return moe(inp, gate.int(), self.weight, self.world_size) return moe(inp, gate.int(), self.weight, self.world_size)
class FFFN(nn.Module):
def __init__(self, num_expert=32, in_feat=1024, hidden_feat=4096,
out_feat=1024, world_size=None, activation=torch.nn.functional.gelu):
super(FFFN, self).__init__()
self.htoh4 = FMoE(num_expert, in_feat, hidden_feat,
world_size=world_size)
self.activation = activation
self.h4toh = FMoE(num_expert, hidden_feat, out_feat,
world_size=world_size)
def forward(self, inp, gate):
x = self.htoh4(inp)
x = self.activation(x)
x = self.h4toh(x)
return x
class BruteForceMoE(nn.Module): class BruteForceMoE(nn.Module):
def __init__(self, num_expert=32, in_feat=1024, out_feat=1024, def __init__(self, num_expert=32, in_feat=1024, out_feat=1024,
world_size=0): world_size=0):
......
import torch import torch
from torch.autograd import Function from torch.autograd import Function
import moe_cuda import fmoe_cuda
class MOELocal(Function): class MOELocal(Function):
@staticmethod @staticmethod
def forward(ctx, inp, gate, weight): def forward(ctx, inp, gate, weight):
expert_count, pos = moe_cuda.expert_count(gate, weight.shape[0]) expert_count, pos = fmoe_cuda.expert_count(gate, weight.shape[0])
input_buf, = moe_cuda.local_scatter(inp, pos) input_buf, = fmoe_cuda.local_scatter(inp, pos)
output_buf, = moe_cuda.forward(input_buf, weight, expert_count) output_buf, = fmoe_cuda.forward(input_buf, weight, expert_count)
output = moe_cuda.local_gather(output_buf, pos) output = fmoe_cuda.local_gather(output_buf, pos)
variables = [input_buf, gate, weight, expert_count, pos] variables = [input_buf, gate, weight, expert_count, pos]
ctx.save_for_backward(*variables) ctx.save_for_backward(*variables)
...@@ -20,10 +20,10 @@ class MOELocal(Function): ...@@ -20,10 +20,10 @@ class MOELocal(Function):
def backward(ctx, grad_out): def backward(ctx, grad_out):
input_buf, gate, weight, expert_count, pos = ctx.saved_tensors input_buf, gate, weight, expert_count, pos = ctx.saved_tensors
grad_out_buf, = moe_cuda.local_scatter(grad_out.contiguous(), pos) grad_out_buf, = fmoe_cuda.local_scatter(grad_out.contiguous(), pos)
grad_inp_buf, grad_weight = moe_cuda.backward( grad_inp_buf, grad_weight = fmoe_cuda.backward(
grad_out_buf, input_buf, weight, expert_count) grad_out_buf, input_buf, weight, expert_count)
grad_inp, = moe_cuda.local_gather(grad_inp_buf, pos) grad_inp, = fmoe_cuda.local_gather(grad_inp_buf, pos)
return grad_inp, None, grad_weight return grad_inp, None, grad_weight
...@@ -33,20 +33,20 @@ class MOEGlobal(Function): ...@@ -33,20 +33,20 @@ class MOEGlobal(Function):
def forward(ctx, inp, gate, weight, world_size): def forward(ctx, inp, gate, weight, world_size):
num_expert = weight.shape[0] num_expert = weight.shape[0]
local_expert_count, pos = moe_cuda.expert_count(gate, local_expert_count, pos = fmoe_cuda.expert_count(gate,
world_size * num_expert) world_size * num_expert)
global_expert_count, fwd_expert_count = moe_cuda.expert_exchange( global_expert_count, fwd_expert_count = fmoe_cuda.expert_exchange(
local_expert_count, num_expert, world_size) local_expert_count, num_expert, world_size)
fwd_batch_size = int(fwd_expert_count.sum().item()) fwd_batch_size = int(fwd_expert_count.sum().item())
local_input_buf, = moe_cuda.local_scatter(inp, pos) local_input_buf, = fmoe_cuda.local_scatter(inp, pos)
local_output_buf, global_input_buf = moe_cuda.global_fused_forward( local_output_buf, global_input_buf = fmoe_cuda.global_fused_forward(
local_input_buf, weight, local_input_buf, weight,
local_expert_count, global_expert_count, local_expert_count, global_expert_count,
fwd_batch_size, inp.shape[0], world_size) fwd_batch_size, inp.shape[0], world_size)
output, = moe_cuda.local_gather(local_output_buf, pos) output, = fmoe_cuda.local_gather(local_output_buf, pos)
variables = (global_input_buf, gate, weight, variables = (global_input_buf, gate, weight,
local_expert_count, global_expert_count, fwd_expert_count, local_expert_count, global_expert_count, fwd_expert_count,
...@@ -63,18 +63,18 @@ class MOEGlobal(Function): ...@@ -63,18 +63,18 @@ class MOEGlobal(Function):
pos) = ctx.saved_tensors pos) = ctx.saved_tensors
num_expert, local_batch_size, fwd_batch_size, world_size = ctx.moe_args num_expert, local_batch_size, fwd_batch_size, world_size = ctx.moe_args
grad_out_buf, = moe_cuda.local_scatter(grad_out.contiguous(), pos) grad_out_buf, = fmoe_cuda.local_scatter(grad_out.contiguous(), pos)
global_grad_out_buf, = moe_cuda.global_scatter(grad_out_buf, global_grad_out_buf, = fmoe_cuda.global_scatter(grad_out_buf,
local_expert_count, global_expert_count, local_expert_count, global_expert_count,
fwd_batch_size, world_size) fwd_batch_size, world_size)
grad_inp_buf, grad_weight = moe_cuda.backward( grad_inp_buf, grad_weight = fmoe_cuda.backward(
global_grad_out_buf, input_buf, weight, fwd_expert_count) global_grad_out_buf, input_buf, weight, fwd_expert_count)
local_grad_inp_buf, = moe_cuda.global_gather(grad_inp_buf, local_grad_inp_buf, = fmoe_cuda.global_gather(grad_inp_buf,
local_expert_count, global_expert_count, local_expert_count, global_expert_count,
local_batch_size, world_size) local_batch_size, world_size)
grad_inp, = moe_cuda.local_gather(local_grad_inp_buf, pos) grad_inp, = fmoe_cuda.local_gather(local_grad_inp_buf, pos)
return grad_inp, None, grad_weight, None return grad_inp, None, grad_weight, None
......
...@@ -12,8 +12,8 @@ if os.environ.get('USE_NCCL', '0') == '1': ...@@ -12,8 +12,8 @@ if os.environ.get('USE_NCCL', '0') == '1':
if __name__ == '__main__': if __name__ == '__main__':
setuptools.setup( setuptools.setup(
name='fmoe_cuda', name='fmoe',
packages=setuptools.find_packages(), packages=['fmoe'],
ext_modules=[ ext_modules=[
CUDAExtension( CUDAExtension(
name='fmoe_cuda', name='fmoe_cuda',
...@@ -30,6 +30,7 @@ if __name__ == '__main__': ...@@ -30,6 +30,7 @@ if __name__ == '__main__':
} }
) )
], ],
version='0.0.1',
cmdclass={ cmdclass={
'build_ext': BuildExtension 'build_ext': BuildExtension
}) })
...@@ -159,6 +159,7 @@ def test_dp(): ...@@ -159,6 +159,7 @@ def test_dp():
if __name__ == '__main__': if __name__ == '__main__':
torch.distributed.init_process_group(backend='mpi') torch.distributed.init_process_group(backend='mpi')
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size() world_size = torch.distributed.get_world_size()
if len(sys.argv) >= 2: if len(sys.argv) >= 2:
task = sys.argv[1] task = sys.argv[1]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment