Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
ba878d29
Commit
ba878d29
authored
Feb 26, 2021
by
Rick Ho
Browse files
fix lint
parent
66f7166d
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
19 additions
and
9 deletions
+19
-9
fmoe/distributed.py
fmoe/distributed.py
+1
-3
fmoe/gates.py
fmoe/gates.py
+5
-3
fmoe/layers.py
fmoe/layers.py
+4
-0
fmoe/megatron.py
fmoe/megatron.py
+9
-3
No files found.
fmoe/distributed.py
View file @
ba878d29
...
@@ -90,14 +90,12 @@ class DistributedGroupedDataParallel(nn.Module):
...
@@ -90,14 +90,12 @@ class DistributedGroupedDataParallel(nn.Module):
groups
[
group_key
]
=
[
p
]
groups
[
group_key
]
=
[
p
]
else
:
else
:
groups
[
group_key
].
append
(
p
)
groups
[
group_key
].
append
(
p
)
for
(
dp_comm
,
dtype
),
group
in
groups
.
items
():
for
(
dp_comm
,
_
),
group
in
groups
.
items
():
if
dp_comm
not
in
self
.
comms
:
if
dp_comm
not
in
self
.
comms
:
continue
continue
comm
=
self
.
comms
[
dp_comm
]
comm
=
self
.
comms
[
dp_comm
]
datas
=
[
p
.
data
for
p
in
group
]
datas
=
[
p
.
data
for
p
in
group
]
coalesced
=
_flatten_dense_tensors
(
datas
)
coalesced
=
_flatten_dense_tensors
(
datas
)
if
fp32_allreduce
and
dtype
!=
torch
.
float32
:
coalesced
=
coalesced
.
float
()
torch
.
distributed
.
broadcast
(
coalesced
,
0
,
group
=
comm
)
torch
.
distributed
.
broadcast
(
coalesced
,
0
,
group
=
comm
)
torch
.
cuda
.
synchronize
()
torch
.
cuda
.
synchronize
()
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
...
...
fmoe/gates.py
View file @
ba878d29
...
@@ -8,14 +8,16 @@ import torch.nn.functional as F
...
@@ -8,14 +8,16 @@ import torch.nn.functional as F
class
ZeroGate
(
nn
.
Module
):
class
ZeroGate
(
nn
.
Module
):
def
__init__
(
self
,
d_model
,
num_expert
,
world_size
,
top_k
=
2
):
r
'''
Guide all input samples to gate 0.
'''
def
__init__
(
self
,
_1
,
_2
,
_3
,
top_k
=
2
):
super
().
__init__
()
super
().
__init__
()
self
.
top_k
=
top_k
self
.
top_k
=
top_k
def
forward
(
self
,
inp
):
def
forward
(
self
,
inp
):
r
'''
r
'''
The naive implementation simply calculates the top-k of a linear layer's
All output to expert 1
output.
'''
'''
idx
=
torch
.
zeros
(
inp
.
shape
[
0
]
*
self
.
top_k
,
idx
=
torch
.
zeros
(
inp
.
shape
[
0
]
*
self
.
top_k
,
dtype
=
torch
.
int64
,
device
=
inp
.
device
)
dtype
=
torch
.
int64
,
device
=
inp
.
device
)
...
...
fmoe/layers.py
View file @
ba878d29
...
@@ -150,6 +150,10 @@ class FMoE(nn.Module):
...
@@ -150,6 +150,10 @@ class FMoE(nn.Module):
self
.
experts_fused
=
True
self
.
experts_fused
=
True
def
expert_fn
(
self
,
inp
,
fwd_expert_count
):
def
expert_fn
(
self
,
inp
,
fwd_expert_count
):
r
'''
The default expert function which either calls the experts as a whole
or as separate experts.
'''
if
self
.
experts_fused
:
if
self
.
experts_fused
:
return
self
.
experts
(
inp
,
fwd_expert_count
)
return
self
.
experts
(
inp
,
fwd_expert_count
)
outputs
=
[]
outputs
=
[]
...
...
fmoe/megatron.py
View file @
ba878d29
...
@@ -3,22 +3,28 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
...
@@ -3,22 +3,28 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
lines of modification.
lines of modification.
See `examples/megatron` for usage instructions.
See `examples/megatron` for usage instructions.
'''
'''
import
math
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
.transformer
import
FMoETransformerMLP
from
.transformer
import
FMoETransformerMLP
from
.distributed
import
DistributedGroupedDataParallel
from
.distributed
import
DistributedGroupedDataParallel
from
.utils
import
get_torch_default_comm
class
_FakeMegatronMLP
(
nn
.
Module
):
class
_FakeMegatronMLP
(
nn
.
Module
):
r
'''
r
'''
A fake mlp without model parallelism for correctness testing
A fake mlp without model parallelism for correctness testing
'''
'''
def
__init__
(
self
,
args
,
group
):
def
__init__
(
self
,
args
,
_
):
super
().
__init__
()
super
().
__init__
()
self
.
fc1
=
nn
.
Linear
(
args
.
hidden_size
,
args
.
hidden_hidden_size
)
self
.
fc1
=
nn
.
Linear
(
args
.
hidden_size
,
args
.
hidden_hidden_size
)
self
.
fc2
=
nn
.
Linear
(
args
.
hidden_hidden_size
,
args
.
hidden_size
)
self
.
fc2
=
nn
.
Linear
(
args
.
hidden_hidden_size
,
args
.
hidden_size
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
r
'''
Directly use GeLU
'''
x
=
self
.
fc1
(
x
)
x
=
self
.
fc1
(
x
)
x
=
F
.
gelu
(
x
)
x
=
F
.
gelu
(
x
)
x
=
self
.
fc2
(
x
)
x
=
self
.
fc2
(
x
)
...
@@ -71,7 +77,7 @@ class MegatronMLP(FMoETransformerMLP):
...
@@ -71,7 +77,7 @@ class MegatronMLP(FMoETransformerMLP):
r
'''
r
'''
Initialize the weight as linear layers.
Initialize the weight as linear layers.
As megatron is using fixed random seed for some nasty stuff, an
As megatron is using fixed random seed for some nasty stuff, an
additional numpy rng is used.
additional numpy rng is used.
'''
'''
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
_random_init_weight
(
self
.
experts
.
htoh4
,
rng
)
_random_init_weight
(
self
.
experts
.
htoh4
,
rng
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment