Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
b56c8043
Unverified
Commit
b56c8043
authored
Feb 25, 2021
by
Rick Ho
Committed by
GitHub
Feb 25, 2021
Browse files
Merge pull request #7 from laekov/reproducibility
Reproducibility
parents
03b2a725
b44de4cd
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
18 additions
and
4 deletions
+18
-4
examples/transformer-xl/mem_transformer.py
examples/transformer-xl/mem_transformer.py
+2
-2
fmoe/layers.py
fmoe/layers.py
+16
-2
No files found.
examples/transformer-xl/mem_transformer.py
View file @
b56c8043
...
@@ -380,8 +380,8 @@ from fmoe import FMoETransformerMLP
...
@@ -380,8 +380,8 @@ from fmoe import FMoETransformerMLP
class
CustomizedMoEPositionwiseFF
(
FMoETransformerMLP
):
class
CustomizedMoEPositionwiseFF
(
FMoETransformerMLP
):
def
__init__
(
self
,
d_model
,
d_inner
,
dropout
,
pre_lnorm
=
False
,
moe_num_expert
=
64
,
moe_top_k
=
2
):
def
__init__
(
self
,
d_model
,
d_inner
,
dropout
,
pre_lnorm
=
False
,
moe_num_expert
=
64
,
moe_top_k
=
2
):
activation
=
nn
.
Sequential
(
activation
=
nn
.
Sequential
(
nn
.
Dropout
(
dropout
),
nn
.
ReLU
(
),
nn
.
ReLU
(
)
nn
.
Dropout
(
dropout
)
)
)
super
().
__init__
(
num_expert
=
moe_num_expert
,
d_model
=
d_model
,
d_hidden
=
d_inner
,
top_k
=
moe_top_k
,
super
().
__init__
(
num_expert
=
moe_num_expert
,
d_model
=
d_model
,
d_hidden
=
d_inner
,
top_k
=
moe_top_k
,
do_lnorm
=
True
,
pre_lnorm
=
pre_lnorm
,
activation
=
activation
,
dropout
=
dropout
)
do_lnorm
=
True
,
pre_lnorm
=
pre_lnorm
,
activation
=
activation
,
dropout
=
dropout
)
...
...
fmoe/layers.py
View file @
b56c8043
...
@@ -61,8 +61,22 @@ class FMoELinear(nn.Module):
...
@@ -61,8 +61,22 @@ class FMoELinear(nn.Module):
'''
'''
x
=
MOELinear
.
apply
(
inp
,
self
.
weight
,
fwd_expert_count
)
x
=
MOELinear
.
apply
(
inp
,
self
.
weight
,
fwd_expert_count
)
if
self
.
bias
is
not
None
:
if
self
.
bias
is
not
None
:
bias
=
torch
.
repeat_interleave
(
self
.
bias
,
# TODO: torch.repeat_interleave seems have wrong
fwd_expert_count
.
to
(
self
.
bias
.
device
),
dim
=
0
)
# behaviors in backward, leading to incorrect
# gradient computation for bias.
# Thus we use a for-loop to manually expand the bias.
# This part should finally goes to MOELinear.apply.
# bias = torch.repeat_interleave(self.bias,
# fwd_expert_count.to(self.bias.device), dim=0)
bias
=
[]
for
i
in
range
(
self
.
num_expert
):
if
fwd_expert_count
[
i
]
>
0
:
bias
.
append
(
self
.
bias
[
i
].
unsqueeze
(
0
).
expand
(
fwd_expert_count
[
i
],
-
1
)
)
bias
=
torch
.
cat
(
bias
,
dim
=
0
)
x
=
x
+
bias
x
=
x
+
bias
return
x
return
x
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment