Commit 84bdd842 authored by Jiezhong Qiu's avatar Jiezhong Qiu
Browse files

moe forward and backward

parent 1704dc36
import torch
import moe1_cuda
import moe_cuda
......@@ -4,12 +4,12 @@
#include <iostream>
#include <vector>
std::vector<torch::Tensor> moe1_cuda_forward(
std::vector<torch::Tensor> moe_cuda_forward(
torch::Tensor input,
torch::Tensor gate,
torch::Tensor weight);
std::vector<torch::Tensor> moe1_cuda_backward(
std::vector<torch::Tensor> moe_cuda_backward(
torch::Tensor grad_output,
torch::Tensor input,
torch::Tensor gate,
......@@ -22,7 +22,7 @@ std::vector<torch::Tensor> moe1_cuda_backward(
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
std::vector<torch::Tensor> moe1_forward(
std::vector<torch::Tensor> moe_forward(
torch::Tensor input, // [batch_size x in_feat]
torch::Tensor gate, // [batch_size]
torch::Tensor weight // [num_expert x out_feat x in_feat]
......@@ -35,10 +35,10 @@ std::vector<torch::Tensor> moe1_forward(
Wx+b = [W b] [x]
[1]
*/
return moe1_cuda_forward(input, gate, weight);
return moe_cuda_forward(input, gate, weight);
}
std::vector<torch::Tensor> moe1_backward(
std::vector<torch::Tensor> moe_backward(
torch::Tensor grad_output, // [batch_size x out_feat]
torch::Tensor input, // [batch_size x out_feat]
torch::Tensor gate, // [batch_size]
......@@ -53,7 +53,7 @@ std::vector<torch::Tensor> moe1_backward(
Wx+b = [W b] [x]
[1]
*/
return moe1_cuda_forward(input, gate, weight);
return moe_cuda_forward(input, gate, weight);
}
......@@ -69,6 +69,6 @@ int main() {
*/
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &moe1_forward, "MoE first linear forward (CUDA)");
// m.def("backward", &lltm_backward, "LLTM backward (CUDA)");
m.def("forward", &moe_forward, "MoE forward (CUDA)");
m.def("backward", &moe_backward, "MoE backward (CUDA)");
}
\ No newline at end of file
......@@ -3,6 +3,7 @@
#include <cstdio>
#include <iostream>
#include <vector>
#include <cassert>
#include <cuda.h>
......@@ -40,6 +41,7 @@ Helper* getHelper(const size_t num_expert) {
if (!helper) {
helper = new Helper(num_expert);
}
assert(helper->num_expert == num_expert);
return helper;
}
......@@ -63,8 +65,7 @@ inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
const float *Barray[], int ldb,
const float *beta,
float *Carray[], int ldc,
int batchCount)
{
int batchCount) {
return cublasSgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}
......@@ -77,8 +78,7 @@ inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
const double *Barray[], int ldb,
const double *beta,
double *Carray[], int ldc,
int batchCount)
{
int batchCount) {
return cublasDgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}
......@@ -91,14 +91,46 @@ inline cublasStatus_t cublasXgemmBatched(cublasHandle_t handle,
const __half *Barray[], int ldb,
const __half *beta,
__half *Carray[], int ldc,
int batchCount)
{
int batchCount) {
return cublasHgemmBatched(handle, transa, transb, m, n, k, alpha, Aarray, lda, Barray, ldb, beta, Carray, ldc, batchCount);
}
inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const float *alpha,
const float *A, int lda,
const float *B, int ldb,
const float *beta,
float *C, int ldc) {
return cublasSgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}
inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const double *alpha,
const double *A, int lda,
const double *B, int ldb,
const double *beta,
double *C, int ldc) {
return cublasDgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}
inline cublasStatus_t cublasXgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int k,
const __half *alpha,
const __half *A, int lda,
const __half *B, int ldb,
const __half *beta,
__half *C, int ldc) {
return cublasHgemm(handle, transa, transb, m, n, k, alpha, A, lda, B, ldb, beta, C, ldc);
}
template <typename scalar_t>
void moe1_cuda_forward_impl(
void moe_cuda_forward_impl(
const scalar_t* input,
const int* gate,
const scalar_t* weight,
......@@ -154,12 +186,47 @@ void moe1_cuda_forward_impl(
batch_size));
checkCudaErrors(cudaStreamSynchronize(*(h->streams)));
// checkCudaErrors(cudaStreamDestroy(st));
// checkCudaErrors(cublasDestroy(handle));
}
template <typename scalar_t>
void moe_cuda_grad_weight(
const scalar_t* input,
const int* gate,
const scalar_t* grad_output,
scalar_t* grad_weight, // [num_expert x out_feat x in_feat]
const size_t batch_size,
const size_t in_feat,
const size_t out_feat,
const size_t num_expert,
cublasOperation_t transb) {
Helper* h = getHelper(num_expert);
int* gate_host = new int[batch_size];
scalar_t alpha = 1, beta = 1;
checkCudaErrors(cudaMemcpy(gate_host, gate, batch_size * sizeof(int), cudaMemcpyDeviceToHost));
for (size_t i=0; i<batch_size; ++i) {
checkCudaErrors(cublasSetStream(h->handle, *(h->streams + gate_host[i])));
checkCudaErrors(cublasSgemm(h->handle,
CUBLAS_OP_N,
CUBLAS_OP_N,
out_feat,
in_feat,
1,
&alpha,
grad_output + i * out_feat,
out_feat,
input + i * in_feat,
1,
&beta,
grad_weight + gate_host[i] * out_feat * in_feat,
out_feat));
}
checkCudaErrors(cudaDeviceSynchronize());
delete[] gate_host;
}
std::vector<torch::Tensor> moe1_cuda_forward(
std::vector<torch::Tensor> moe_cuda_forward(
torch::Tensor input,
torch::Tensor gate,
torch::Tensor weight) {
......@@ -171,8 +238,8 @@ std::vector<torch::Tensor> moe1_cuda_forward(
// printf("b=%ld, expert=%ld, in_feat (d_model)=%ld, out_feat (d_ffn)=%ld, topk=%ld\n", batch_size, num_expert, in_feat, out_feat, top_k);
auto output = input.new_zeros({batch_size, out_feat});
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe1_forward_cuda", ([&] {
moe1_cuda_forward_impl<scalar_t>(
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_forward_cuda", ([&] {
moe_cuda_forward_impl<scalar_t>(
input.data_ptr<scalar_t>(),
gate.data_ptr<int>(),
weight.data_ptr<scalar_t>(),
......@@ -188,7 +255,7 @@ std::vector<torch::Tensor> moe1_cuda_forward(
return {output, };
}
std::vector<torch::Tensor> moe1_cuda_backward(
std::vector<torch::Tensor> moe_cuda_backward(
torch::Tensor grad_output, // [batch_size x out_feat]
torch::Tensor input, // [batch_size x out_feat]
torch::Tensor gate, // [batch_size]
......@@ -201,9 +268,10 @@ std::vector<torch::Tensor> moe1_cuda_backward(
auto grad_input = grad_output.new_zeros({batch_size, in_feat}); // batch_size x in_feat
auto grad_weight = grad_output.new_zeros({num_expert, out_feat, in_feat}); // num_expert x out_feat x in_feat
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe1_cuda_backward", ([&] {
moe1_cuda_forward_impl<scalar_t>(
// grad_input is easy to compute, exactly the same as forward
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "moe_cuda_backward", ([&] {
moe_cuda_forward_impl<scalar_t>(
grad_output.data_ptr<scalar_t>(),
gate.data_ptr<int>(),
weight.data_ptr<scalar_t>(),
......
......@@ -2,10 +2,10 @@ from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name='moe1_cuda',
name='moe_cuda',
ext_modules=[
CUDAExtension(
name='moe1_cuda',
name='moe_cuda',
sources=[
'moe.cpp',
'moe_cuda_kernel.cu',
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment