Commit 72e40c74 authored by Rick Ho's avatar Rick Ho
Browse files

optional residual

parent e86dea53
r'''
The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
lines of modification.
See `examples/megatron` for usage instructions.
'''
import torch
from .transformer import FMoETransformerMLP
from .distributed import DistributedGroupedDataParallel
from .utils import get_torch_default_comm
class MegatronMLP(FMoETransformerMLP):
r'''
Make the FMoETransformerMLP layer that distributes experts across
communication group `group` to replace the original MLP layer in Megatron.
'''
def __init__(self, args, group):
assert (args.seq_length * args.micro_batch_size
% args.tensor_model_parallel_size == 0
), "Batch size x sequence length should be multiple of mp size"
if not args.distributed_experts:
world_size = 1
else:
world_size = args.world_size
super().__init__(args.num_experts,
top_k=args.top_k,
d_model=args.hidden_size, d_hidden=args.hidden_hidden_size,
world_size=world_size, mp_group=group,
expert_dp_comm='none' if args.distributed_experts else 'dp')
self.bias = torch.nn.parameter.Parameter(
torch.zeros(args.hidden_size, dtype=torch.float32)
)
def forward(self, inp):
return super().forward(inp), self.bias
def fmoefy(model, num_experts=None, distributed_experts=True,
hidden_hidden_size=None, top_k=None):
r'''
Replace MLP layers in a transformer-based model in Megatron by MoE.
* `model` should be a standard Megatron model that has
`model.language_model.transformer.layers` as transformer layers, which is an
array of transformer blocks that contain an `mlp` member.
* `distributed_expert` is set to True if different experts are located in
different workers. Otherwise, the experts on the workers are identical, and
they are trained in data-parallel mode. This can be useful when testing on
small models that do not require high training throughput or large parameter
capacity.
Note that pipeline parallel is not supported yet. When distributed experts
are enabled, their communicator should be Megatron's
tensor_model_parall_comm x data_parallel_comm, which is not created.
'''
from megatron import get_args
args = get_args()
if num_experts is not None:
args.num_experts = num_experts
assert (
'num_experts' in args
), 'num_experts should be specified in arguments or fmoefy function'
if hidden_hidden_size is not None:
args.hidden_hidden_size = hidden_hidden_size
elif not hasattr(args, 'hidden_hidden_size'):
args.hidden_hidden_size = args.hidden_size * 4
if top_k is not None:
args.top_k = top_k
elif not hasattr(args, 'top_k'):
args.top_k = 2
# Set distributed_experts to None to use default setting in args
if distributed_experts is not None:
args.distributed_experts = distributed_experts
for l in model.language_model.transformer.layers:
l.mlp = MegatronMLP(args, get_torch_default_comm())
return model
class DistributedDataParallel(DistributedGroupedDataParallel):
r'''
A wrapper that is used to replace the DDP module provided by Megatron, which
is adapted to enable the sophiscated parallel and reduction strategies in
Fast MoE.
'''
def __init__(self, module):
from megatron import mpu
super().__init__(
module,
mp_group=mpu.get_model_parallel_group(),
dp_group=mpu.get_data_parallel_group()
)
def state_dict(self, *args, **kwargs):
r'''
Keep consitency with Megatron
'''
return self.module.state_dict(*args, **kwargs)
def state_dict_for_save_checkpoint(self, *args, **kwargs):
r'''
Keep consitency with Megatron
'''
return self.module.state_dict_for_save_checkpoint(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
r'''
Keep consitency with Megatron
'''
return self.module.load_state_dict(*args, **kwargs)
...@@ -49,6 +49,7 @@ class FMoETransformerMLP(FMoE): ...@@ -49,6 +49,7 @@ class FMoETransformerMLP(FMoE):
top_k=2, top_k=2,
do_lnorm=False, do_lnorm=False,
pre_lnorm=False, pre_lnorm=False,
add_residual=False,
expert_dp_comm='none' expert_dp_comm='none'
): ):
super().__init__(num_expert=num_expert, d_model=d_model, gate=gate, super().__init__(num_expert=num_expert, d_model=d_model, gate=gate,
...@@ -61,6 +62,7 @@ class FMoETransformerMLP(FMoE): ...@@ -61,6 +62,7 @@ class FMoETransformerMLP(FMoE):
self.pre_lnorm = pre_lnorm self.pre_lnorm = pre_lnorm
else: else:
self.pre_lnorm = None self.pre_lnorm = None
self.add_residual = add_residual
self.mark_parallel_comm(expert_dp_comm) self.mark_parallel_comm(expert_dp_comm)
def forward(self, inp: torch.Tensor): def forward(self, inp: torch.Tensor):
...@@ -72,7 +74,9 @@ class FMoETransformerMLP(FMoE): ...@@ -72,7 +74,9 @@ class FMoETransformerMLP(FMoE):
inp = inp.reshape(-1, self.d_model) inp = inp.reshape(-1, self.d_model)
if self.pre_lnorm is not None and self.pre_lnorm: if self.pre_lnorm is not None and self.pre_lnorm:
inp = self.layer_norm(inp) inp = self.layer_norm(inp)
output = super().forward(inp) + inp output = super().forward(inp)
if self.pre_lnorm is not None and not self.pre_lnorm: if self.pre_lnorm is not None and not self.pre_lnorm:
output = self.layer_norm(output) output = self.layer_norm(output)
if self.add_residual:
output += inp
return output.reshape(original_shape) return output.reshape(original_shape)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment