Commit 69121432 authored by Sengxian's avatar Sengxian
Browse files

Merge remote-tracking branch 'origin/master' into balance_public

parents 89d6c794 c1e67585
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Compile with "..."
2. Run "..." with "..." processes on "..." nodes
**Expected behavior**
A clear and concise description of what you expected to happen.
**Logs**
If applicable, add logs to help explain your problem.
**Platform**
- Device: [e.g. NVIDIA V100]
- OS: [e.g. Debian 10.2 buster]
- CUDA version: [e.g. 11.1]
- NCCL version: [e.g. 2.7.8-1]
**Additional context**
Add any other context about the problem here.
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
...@@ -402,7 +402,7 @@ indent-after-paren=4 ...@@ -402,7 +402,7 @@ indent-after-paren=4
indent-string=' ' indent-string=' '
# Maximum number of characters on a single line. # Maximum number of characters on a single line.
max-line-length=81 max-line-length=120
# Maximum number of lines in a module. # Maximum number of lines in a module.
max-module-lines=1000 max-module-lines=1000
......
Part of our code in megatron.py is copied from NVIDIA's Megatron-LM
codebase with modification.
------------- LICENSE FOR NVIDIA Megatron-LM --------------
The following applies to all files unless otherwise noted:
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--
This repository also contains code from Hugging Face Inc., Google Research,
and Facebook (from their Fairseq project). Files from these
organizations have notices at the top of each file. Below are licenses
used in those files, as indicated.
------------- LICENSE FOR huggingface and Google Research code --------------
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
------------- LICENSE FOR Facebook Fairseq code --------------
MIT License
Copyright (c) Facebook, Inc. and its affiliates.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
...@@ -3,7 +3,11 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two ...@@ -3,7 +3,11 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
lines of modification. lines of modification.
See `examples/megatron` for usage instructions. See `examples/megatron` for usage instructions.
""" """
import os
import sys
import math import math
import random
from collections import OrderedDict
import numpy as np import numpy as np
import torch import torch
import torch.nn as nn import torch.nn as nn
...@@ -361,3 +365,382 @@ class DistributedDataParallel(DistributedGroupedDataParallel): ...@@ -361,3 +365,382 @@ class DistributedDataParallel(DistributedGroupedDataParallel):
Keep consitency with Megatron Keep consitency with Megatron
""" """
return self.module.load_state_dict(*args, **kwargs) return self.module.load_state_dict(*args, **kwargs)
def get_fmoe_checkpoint_name(
checkpoints_path, iteration, release=False, data_parallel_rank=-1
):
"""A unified checkpoint name, allowing specifying a data parallel rank"""
from megatron import mpu
from megatron.checkpointing import get_checkpoint_name
if data_parallel_rank == -1:
data_parallel_rank = mpu.get_data_parallel_rank()
if data_parallel_rank == 0:
return get_checkpoint_name(checkpoints_path, iteration, release)
if release:
directory = "release"
else:
directory = "iter_{:07d}".format(iteration)
# Use both the tensor and pipeline MP rank.
if mpu.get_pipeline_model_parallel_world_size() == 1:
return os.path.join(
checkpoints_path,
directory,
"mp_rank_{:02d}_dp_rank_{:04d}".format(
mpu.get_tensor_model_parallel_rank(), data_parallel_rank
),
"model_optim_rng.pt",
)
return os.path.join(
checkpoints_path,
directory,
"mp_rank_{:02d}_{:03d}_dp_rank_{:04d}".format(
mpu.get_tensor_model_parallel_rank(),
mpu.get_pipeline_model_parallel_rank(),
data_parallel_rank,
),
"model_optim_rng.pt",
)
def save_checkpoint(iteration, model, optimizer, lr_scheduler):
"""Save a model checkpoint with expert parallel """
# TODO: update patch
from megatron import get_args
from megatron import mpu
from megatron import print_rank_last
expert_dp_comm = "none"
if mpu.get_data_parallel_rank() == 0:
# at dp rank 0, we still follows the native load_checkpoint by megatron
from megatron.checkpointing import save_checkpoint as save_checkpoint_native
save_checkpoint_native(iteration, model, optimizer, lr_scheduler)
return
args = get_args()
# Only rank zero of the data parallel writes to the disk.
if isinstance(model, DistributedDataParallel):
model = model.module
print_rank_last(
"saving checkpoint at iteration {:7d} to {}".format(iteration, args.save)
)
# Arguments, iteration, and model.
state_dict = {}
state_dict["model"] = model.state_dict_for_save_checkpoint(
keep_vars=(mpu.get_data_parallel_rank() > 0)
)
def extract_expert_param(state_dict, expert_dp_comm="none"):
state_dict_new = state_dict.__class__()
for k, v in state_dict.items():
# megatron uses both dict and OrderedDict in its state_dict
if isinstance(v, (OrderedDict, dict)):
v_new = extract_expert_param(v, expert_dp_comm)
if len(v_new) > 0:
state_dict_new[k] = v_new
elif hasattr(v, "dp_comm") and v.dp_comm == expert_dp_comm:
state_dict_new[k] = v.detach()
return state_dict_new
state_dict["model"] = extract_expert_param(state_dict["model"], expert_dp_comm)
# Optimizer stuff.
if not args.no_save_optim:
if optimizer is not None:
state_dict["optimizer"] = optimizer.state_dict()
param_global_idx = 0
for param_group in optimizer.optimizer.param_groups:
for param in param_group["params"]:
if not (
hasattr(param, "dp_comm") and param.dp_comm == expert_dp_comm
):
# this parameter is not an expert parameter
# thus there is no need to save its state in current rank
# since it has been saved by data parallel rank 0
if args.fp16:
# fp16 optimizer may have empty state due to overflow
state_dict["optimizer"]["optimizer"]["state"].pop(
param_global_idx, None
)
else:
state_dict["optimizer"]["state"].pop(param_global_idx)
param_global_idx += 1
if args.fp16:
state_dict["optimizer"]["optimizer"].pop("param_groups")
# fp32_from_fp16_params in state_dict is not a copy
# but a reference to optimizer.fp32_from_fp16_params,
# changing it in state_dict will change
# optimizer.fp32_from_fp16_params as well
# thus we create an empty fp32_from_fp16_params in state_dict
# and only insert expert parameters.
fp32_from_fp16_params = state_dict["optimizer"]["fp32_from_fp16_params"]
state_dict["optimizer"]["fp32_from_fp16_params"] = []
for param_group in fp32_from_fp16_params:
param_group_copy = []
for param in param_group:
param_copy = (
param
if hasattr(param, "dp_comm")
and param.dp_comm == expert_dp_comm
else None
)
param_group_copy.append(param_copy)
state_dict["optimizer"]["fp32_from_fp16_params"].append(
param_group_copy
)
else:
state_dict["optimizer"].pop("param_groups")
# Save.
checkpoint_name = get_fmoe_checkpoint_name(args.save, iteration)
from megatron.checkpointing import ensure_directory_exists
from megatron.checkpointing import get_checkpoint_tracker_filename
ensure_directory_exists(checkpoint_name)
torch.save(state_dict, checkpoint_name)
# Wait so everyone is done (necessary)
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print(
" successfully saved checkpoint at iteration {:7d} to {}".format(
iteration, args.save
),
flush=True,
)
# And update the latest iteration
if torch.distributed.get_rank() == 0:
tracker_filename = get_checkpoint_tracker_filename(args.save)
with open(tracker_filename, "w") as f:
f.write(str(iteration))
# Wait so everyone is done (not necessary)
torch.distributed.barrier()
def merge_state_dict(state_dict_rank0, state_dict_local, fp16):
"""merge two state dicts, one from data parallel rank 0,
another only contains expert states"""
from megatron import print_rank_last
def merge_model(state_dict_rank0, state_dict_local):
for k, v in state_dict_local.items():
# megatron uses both dict and OrderedDict in its state_dict
if isinstance(v, (OrderedDict, dict)):
merge_model(state_dict_rank0[k], v)
else:
state_dict_rank0[k] = v
merge_model(state_dict_rank0["model"], state_dict_local["model"])
optimizer_rank0 = (
state_dict_rank0["optimizer"]["optimizer"]
if fp16
else state_dict_rank0["optimizer"]
)
optimizer_local = (
state_dict_local["optimizer"]["optimizer"]
if fp16
else state_dict_local["optimizer"]
)
for k, v in optimizer_local["state"].items():
optimizer_rank0["state"][k] = v
if fp16:
for group_idx, param_group in enumerate(
state_dict_local["optimizer"]["fp32_from_fp16_params"]
):
for param_in_group_idx, param in enumerate(param_group):
if param is not None:
state_dict_rank0["optimizer"]["fp32_from_fp16_params"][group_idx][
param_in_group_idx
] = param
return state_dict_rank0
def load_checkpoint(model, optimizer, lr_scheduler, load_arg="load"):
"""Load a model checkpoint and return the iteration."""
from megatron import get_args
from megatron import mpu
from megatron import print_rank_last
from megatron.checkpointing import get_checkpoint_tracker_filename
from megatron.checkpointing import set_checkpoint_version
from megatron.checkpointing import check_checkpoint_args
from megatron.checkpointing import update_num_microbatches
if mpu.get_data_parallel_rank() == 0:
# at dp rank 0, we still follow the native load_checkpoint by megatron
from megatron.checkpointing import load_checkpoint as load_checkpoint_native
return load_checkpoint_native(model, optimizer, lr_scheduler, load_arg)
args = get_args()
load_dir = getattr(args, load_arg)
if isinstance(model, DistributedDataParallel):
model = model.module
# Read the tracker file and set the iteration.
tracker_filename = get_checkpoint_tracker_filename(load_dir)
# If no tracker file, return iretation zero.
if not os.path.isfile(tracker_filename):
print_rank_last(
"WARNING: could not find the metadata file {} ".format(tracker_filename)
)
print_rank_last(
" will not load any checkpoints and will start from " "random"
)
return 0
# Otherwise, read the tracker file and either set the iteration or
# mark it as a release checkpoint.
iteration = 0
release = False
with open(tracker_filename, "r") as f:
metastring = f.read().strip()
try:
iteration = int(metastring)
except ValueError:
release = metastring == "release"
if not release:
print_rank_last(
"ERROR: Invalid metadata file {}. Exiting".format(tracker_filename)
)
sys.exit()
assert iteration > 0 or release, "error parsing metadata file {}".format(
tracker_filename
)
# Checkpoint.
checkpoint_name_rank0 = get_fmoe_checkpoint_name(load_dir, iteration, release, 0)
checkpoint_name_local = get_fmoe_checkpoint_name(
load_dir, iteration, release, mpu.get_data_parallel_rank()
)
print_rank_last(
" loading checkpoint at rank 0 from {} and rank {} from {} at iteration {}, will merge them later".format(
checkpoint_name_rank0,
mpu.get_data_parallel_rank(),
checkpoint_name_local,
iteration,
)
)
# Load the checkpoint.
def load_state_dict(checkpoint_name):
try:
state_dict = torch.load(checkpoint_name, map_location="cpu")
except ModuleNotFoundError:
from megatron.fp16_deprecated import loss_scaler
# For backward compatibility.
print_rank_last(" > deserializing using the old code structure ...")
sys.modules["fp16.loss_scaler"] = sys.modules[
"megatron.fp16_deprecated.loss_scaler"
]
sys.modules["megatron.fp16.loss_scaler"] = sys.modules[
"megatron.fp16_deprecated.loss_scaler"
]
state_dict = torch.load(checkpoint_name, map_location="cpu")
sys.modules.pop("fp16.loss_scaler", None)
sys.modules.pop("megatron.fp16.loss_scaler", None)
except BaseException:
print_rank_last("could not load the checkpoint")
sys.exit()
return state_dict
state_dict_rank0 = load_state_dict(checkpoint_name_rank0)
state_dict_local = load_state_dict(checkpoint_name_local)
state_dict = merge_state_dict(state_dict_rank0, state_dict_local, args.fp16)
# set checkpoint version
set_checkpoint_version(state_dict.get("checkpoint_version", 0))
# Set iteration.
if args.finetune or release:
iteration = 0
else:
try:
iteration = state_dict["iteration"]
except KeyError:
try: # Backward compatible with older checkpoints
iteration = state_dict["total_iters"]
except KeyError:
print_rank_last(
"A metadata file exists but unable to load "
"iteration from checkpoint {}, exiting".format(
checkpoint_name_local
)
)
sys.exit()
# Check arguments.
assert args.consumed_train_samples == 0
assert args.consumed_valid_samples == 0
if "args" in state_dict:
checkpoint_args = state_dict["args"]
check_checkpoint_args(checkpoint_args)
args.consumed_train_samples = getattr(
checkpoint_args, "consumed_train_samples", 0
)
update_num_microbatches(consumed_samples=args.consumed_train_samples)
args.consumed_valid_samples = getattr(
checkpoint_args, "consumed_valid_samples", 0
)
else:
print_rank_last("could not find arguments in the checkpoint ...")
# Model.
model.load_state_dict(state_dict["model"])
# Optimizer.
if not release and not args.finetune and not args.no_load_optim:
try:
if optimizer is not None:
optimizer.load_state_dict(state_dict["optimizer"])
if lr_scheduler is not None:
lr_scheduler.load_state_dict(state_dict["lr_scheduler"])
except KeyError:
print_rank_last(
"Unable to load optimizer from checkpoint {}. "
"Specify --no-load-optim or --finetune to prevent "
"attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name_local)
)
sys.exit()
# rng states.
if not release and not args.finetune and not args.no_load_rng:
try:
random.setstate(state_dict["random_rng_state"])
np.random.set_state(state_dict["np_rng_state"])
torch.set_rng_state(state_dict["torch_rng_state"])
torch.cuda.set_rng_state(state_dict["cuda_rng_state"])
mpu.get_cuda_rng_tracker().set_states(state_dict["rng_tracker_states"])
except KeyError:
print_rank_last(
"Unable to load optimizer from checkpoint {}. "
"Specify --no-load-rng or --finetune to prevent "
"attempting to load the optimizer state, "
"exiting ...".format(checkpoint_name_local)
)
sys.exit()
torch.distributed.barrier()
print_rank_last(
" successfully loaded checkpoint (with expert parametes updated) from {} at iteration {}".format(
args.load, iteration
)
)
return iteration
...@@ -15,10 +15,8 @@ class _Expert(nn.Module): ...@@ -15,10 +15,8 @@ class _Expert(nn.Module):
def __init__(self, num_expert, d_model, d_hidden, activation, rank=0): def __init__(self, num_expert, d_model, d_hidden, activation, rank=0):
super().__init__() super().__init__()
self.htoh4 = FMoELinear(num_expert, d_model, d_hidden, bias=True, self.htoh4 = FMoELinear(num_expert, d_model, d_hidden, bias=True, rank=rank)
rank=rank) self.h4toh = FMoELinear(num_expert, d_hidden, d_model, bias=True, rank=rank)
self.h4toh = FMoELinear(num_expert, d_hidden, d_model, bias=True,
rank=rank)
self.activation = activation self.activation = activation
def forward(self, inp, fwd_expert_count): def forward(self, inp, fwd_expert_count):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment