Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastMoE
Commits
5e5b4044
Unverified
Commit
5e5b4044
authored
Feb 26, 2021
by
Rick Ho
Committed by
GitHub
Feb 26, 2021
Browse files
Merge pull request #9 from laekov/laekov/accfix
Laekov/accfix
parents
1cfc5462
ba878d29
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
90 additions
and
37 deletions
+90
-37
.gitignore
.gitignore
+0
-3
examples/.gitignore
examples/.gitignore
+3
-0
fmoe/distributed.py
fmoe/distributed.py
+1
-3
fmoe/gates.py
fmoe/gates.py
+19
-0
fmoe/layers.py
fmoe/layers.py
+4
-25
fmoe/megatron.py
fmoe/megatron.py
+62
-5
fmoe/transformer.py
fmoe/transformer.py
+1
-1
No files found.
.gitignore
View file @
5e5b4044
...
@@ -10,6 +10,3 @@ a.out
...
@@ -10,6 +10,3 @@ a.out
build
build
*swp
*swp
logs
logs
examples/transformer-xl/data
examples/data
examples/transformer-xl/LM-TFM-enwik8
examples/.gitignore
0 → 100644
View file @
5e5b4044
transformer-xl/data
transformer-xl/LM-TFM-enwik8
data
fmoe/distributed.py
View file @
5e5b4044
...
@@ -90,14 +90,12 @@ class DistributedGroupedDataParallel(nn.Module):
...
@@ -90,14 +90,12 @@ class DistributedGroupedDataParallel(nn.Module):
groups
[
group_key
]
=
[
p
]
groups
[
group_key
]
=
[
p
]
else
:
else
:
groups
[
group_key
].
append
(
p
)
groups
[
group_key
].
append
(
p
)
for
(
dp_comm
,
dtype
),
group
in
groups
.
items
():
for
(
dp_comm
,
_
),
group
in
groups
.
items
():
if
dp_comm
not
in
self
.
comms
:
if
dp_comm
not
in
self
.
comms
:
continue
continue
comm
=
self
.
comms
[
dp_comm
]
comm
=
self
.
comms
[
dp_comm
]
datas
=
[
p
.
data
for
p
in
group
]
datas
=
[
p
.
data
for
p
in
group
]
coalesced
=
_flatten_dense_tensors
(
datas
)
coalesced
=
_flatten_dense_tensors
(
datas
)
if
fp32_allreduce
and
dtype
!=
torch
.
float32
:
coalesced
=
coalesced
.
float
()
torch
.
distributed
.
broadcast
(
coalesced
,
0
,
group
=
comm
)
torch
.
distributed
.
broadcast
(
coalesced
,
0
,
group
=
comm
)
torch
.
cuda
.
synchronize
()
torch
.
cuda
.
synchronize
()
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
synced
=
_unflatten_dense_tensors
(
coalesced
,
datas
)
...
...
fmoe/gates.py
View file @
5e5b4044
...
@@ -7,6 +7,25 @@ import torch.nn as nn
...
@@ -7,6 +7,25 @@ import torch.nn as nn
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
class
ZeroGate
(
nn
.
Module
):
r
'''
Guide all input samples to gate 0.
'''
def
__init__
(
self
,
_1
,
_2
,
_3
,
top_k
=
2
):
super
().
__init__
()
self
.
top_k
=
top_k
def
forward
(
self
,
inp
):
r
'''
All output to expert 1
'''
idx
=
torch
.
zeros
(
inp
.
shape
[
0
]
*
self
.
top_k
,
dtype
=
torch
.
int64
,
device
=
inp
.
device
)
score
=
torch
.
ones
(
inp
.
shape
[
0
]
*
self
.
top_k
,
device
=
inp
.
device
)
/
self
.
top_k
return
idx
,
score
.
reshape
(
-
1
,
1
,
self
.
top_k
)
class
NaiveGate
(
nn
.
Module
):
class
NaiveGate
(
nn
.
Module
):
r
'''
r
'''
A naive gate implementation that defines the standard behavior of the gate
A naive gate implementation that defines the standard behavior of the gate
...
...
fmoe/layers.py
View file @
5e5b4044
r
'''
r
'''
Layers that FMoE provides to users
Layers that FMoE provides to users
'''
'''
import
math
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
numpy
as
np
from
.functions
import
moe_prepare_forward
from
.functions
import
moe_prepare_forward
from
.functions
import
MOEScatter
,
MOEGather
,
MOELinear
from
.functions
import
MOEScatter
,
MOEGather
,
MOELinear
...
@@ -31,29 +29,6 @@ class FMoELinear(nn.Module):
...
@@ -31,29 +29,6 @@ class FMoELinear(nn.Module):
self
.
bias
=
nn
.
Parameter
(
torch
.
Tensor
(
num_expert
,
out_feat
))
self
.
bias
=
nn
.
Parameter
(
torch
.
Tensor
(
num_expert
,
out_feat
))
else
:
else
:
self
.
register_parameter
(
'bias'
,
None
)
self
.
register_parameter
(
'bias'
,
None
)
self
.
reset_parameters
()
def
reset_parameters
(
self
):
r
'''
Initialize the weight as linear layers
'''
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
# copied from torch.nn.init.kaiming_uniform_
fan
=
nn
.
init
.
_calculate_correct_fan
(
self
.
weight
[
0
],
'fan_in'
)
gain
=
nn
.
init
.
calculate_gain
(
'leaky_relu'
,
math
.
sqrt
(
5
))
std
=
gain
/
math
.
sqrt
(
fan
)
bound
=
math
.
sqrt
(
3.0
)
*
std
device
=
self
.
weight
.
device
dtype
=
self
.
weight
.
dtype
weight
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
weight
.
size
()))
self
.
weight
.
data
=
torch
.
tensor
(
weight
,
dtype
=
dtype
,
device
=
device
)
if
self
.
bias
is
not
None
:
fan_in
,
_
=
nn
.
init
.
_calculate_fan_in_and_fan_out
(
self
.
weight
[
0
])
bound
=
1
/
math
.
sqrt
(
fan_in
)
bias
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
bias
.
size
()))
self
.
bias
.
data
=
torch
.
tensor
(
bias
,
dtype
=
dtype
,
device
=
device
)
def
forward
(
self
,
inp
,
fwd_expert_count
):
def
forward
(
self
,
inp
,
fwd_expert_count
):
r
'''
r
'''
...
@@ -175,6 +150,10 @@ class FMoE(nn.Module):
...
@@ -175,6 +150,10 @@ class FMoE(nn.Module):
self
.
experts_fused
=
True
self
.
experts_fused
=
True
def
expert_fn
(
self
,
inp
,
fwd_expert_count
):
def
expert_fn
(
self
,
inp
,
fwd_expert_count
):
r
'''
The default expert function which either calls the experts as a whole
or as separate experts.
'''
if
self
.
experts_fused
:
if
self
.
experts_fused
:
return
self
.
experts
(
inp
,
fwd_expert_count
)
return
self
.
experts
(
inp
,
fwd_expert_count
)
outputs
=
[]
outputs
=
[]
...
...
fmoe/megatron.py
View file @
5e5b4044
...
@@ -3,9 +3,52 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
...
@@ -3,9 +3,52 @@ The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
lines of modification.
lines of modification.
See `examples/megatron` for usage instructions.
See `examples/megatron` for usage instructions.
'''
'''
import
math
import
numpy
as
np
import
torch
import
torch.nn
as
nn
import
torch.nn.functional
as
F
from
.transformer
import
FMoETransformerMLP
from
.transformer
import
FMoETransformerMLP
from
.distributed
import
DistributedGroupedDataParallel
from
.distributed
import
DistributedGroupedDataParallel
from
.utils
import
get_torch_default_comm
class
_FakeMegatronMLP
(
nn
.
Module
):
r
'''
A fake mlp without model parallelism for correctness testing
'''
def
__init__
(
self
,
args
,
_
):
super
().
__init__
()
self
.
fc1
=
nn
.
Linear
(
args
.
hidden_size
,
args
.
hidden_hidden_size
)
self
.
fc2
=
nn
.
Linear
(
args
.
hidden_hidden_size
,
args
.
hidden_size
)
def
forward
(
self
,
x
):
r
'''
Directly use GeLU
'''
x
=
self
.
fc1
(
x
)
x
=
F
.
gelu
(
x
)
x
=
self
.
fc2
(
x
)
return
x
,
torch
.
zeros_like
(
x
)
def
_random_init_weight
(
self
,
rng
):
r
'''
Copied from torch.nn.init.kaiming_uniform_
'''
fan
=
nn
.
init
.
_calculate_correct_fan
(
self
.
weight
[
0
],
'fan_in'
)
gain
=
nn
.
init
.
calculate_gain
(
'leaky_relu'
,
math
.
sqrt
(
5
))
std
=
gain
/
math
.
sqrt
(
fan
)
bound
=
math
.
sqrt
(
3.0
)
*
std
device
=
self
.
weight
.
device
dtype
=
self
.
weight
.
dtype
weight
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
weight
.
size
()))
self
.
weight
.
data
=
torch
.
tensor
(
weight
,
dtype
=
dtype
,
device
=
device
)
if
self
.
bias
is
not
None
:
fan_in
,
_
=
nn
.
init
.
_calculate_fan_in_and_fan_out
(
self
.
weight
[
0
])
bound
=
1
/
math
.
sqrt
(
fan_in
)
bias
=
rng
.
uniform
(
-
bound
,
bound
,
size
=
tuple
(
self
.
bias
.
size
()))
self
.
bias
.
data
=
torch
.
tensor
(
bias
,
dtype
=
dtype
,
device
=
device
)
class
MegatronMLP
(
FMoETransformerMLP
):
class
MegatronMLP
(
FMoETransformerMLP
):
...
@@ -26,10 +69,23 @@ class MegatronMLP(FMoETransformerMLP):
...
@@ -26,10 +69,23 @@ class MegatronMLP(FMoETransformerMLP):
d_model
=
args
.
hidden_size
,
d_hidden
=
args
.
hidden_hidden_size
,
d_model
=
args
.
hidden_size
,
d_hidden
=
args
.
hidden_hidden_size
,
world_size
=
world_size
,
mp_group
=
group
,
world_size
=
world_size
,
mp_group
=
group
,
expert_dp_comm
=
'none'
if
args
.
distributed_experts
else
'dp'
)
expert_dp_comm
=
'none'
if
args
.
distributed_experts
else
'dp'
)
self
.
hidden_size
=
args
.
hidden_size
self
.
rank
=
args
.
rank
self
.
reset_parameters
()
def
reset_parameters
(
self
):
r
'''
Initialize the weight as linear layers.
As megatron is using fixed random seed for some nasty stuff, an
additional numpy rng is used.
'''
rng
=
np
.
random
.
default_rng
(
np
.
random
.
randint
(
2048
)
+
self
.
rank
)
_random_init_weight
(
self
.
experts
.
htoh4
,
rng
)
_random_init_weight
(
self
.
experts
.
h4toh
,
rng
)
def
forward
(
self
,
inp
):
def
forward
(
self
,
inp
):
output
=
super
().
forward
(
inp
)
return
super
().
forward
(
inp
),
torch
.
zeros
(
self
.
hidden_size
,
bias
=
output
.
new_zeros
(
output
.
size
(
-
1
),
requires_grad
=
False
)
dtype
=
inp
.
dtype
,
device
=
inp
.
device
)
return
output
,
bias
def
fmoefy
(
model
,
num_experts
=
None
,
distributed_experts
=
True
,
def
fmoefy
(
model
,
num_experts
=
None
,
distributed_experts
=
True
,
...
@@ -49,6 +105,7 @@ def fmoefy(model, num_experts=None, distributed_experts=True,
...
@@ -49,6 +105,7 @@ def fmoefy(model, num_experts=None, distributed_experts=True,
tensor_model_parall_comm x data_parallel_comm, which is not created.
tensor_model_parall_comm x data_parallel_comm, which is not created.
'''
'''
from
megatron
import
get_args
from
megatron
import
get_args
from
megatron
import
mpu
args
=
get_args
()
args
=
get_args
()
if
num_experts
is
not
None
:
if
num_experts
is
not
None
:
args
.
num_experts
=
num_experts
args
.
num_experts
=
num_experts
...
@@ -71,7 +128,7 @@ def fmoefy(model, num_experts=None, distributed_experts=True,
...
@@ -71,7 +128,7 @@ def fmoefy(model, num_experts=None, distributed_experts=True,
args
.
distributed_experts
=
distributed_experts
args
.
distributed_experts
=
distributed_experts
for
l
in
model
.
language_model
.
transformer
.
layers
:
for
l
in
model
.
language_model
.
transformer
.
layers
:
l
.
mlp
=
MegatronMLP
(
args
,
get_torch_default_comm
())
l
.
mlp
=
MegatronMLP
(
args
,
mpu
.
get_model_parallel_group
())
return
model
return
model
...
...
fmoe/transformer.py
View file @
5e5b4044
...
@@ -47,7 +47,7 @@ class FMoETransformerMLP(FMoE):
...
@@ -47,7 +47,7 @@ class FMoETransformerMLP(FMoE):
activation
=
torch
.
nn
.
GELU
(),
activation
=
torch
.
nn
.
GELU
(),
gate
=
NaiveGate
,
gate
=
NaiveGate
,
top_k
=
2
,
top_k
=
2
,
expert_dp_comm
=
'none'
,
expert_dp_comm
=
'none'
):
):
super
().
__init__
(
num_expert
=
num_expert
,
d_model
=
d_model
,
gate
=
gate
,
super
().
__init__
(
num_expert
=
num_expert
,
d_model
=
d_model
,
gate
=
gate
,
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
)
top_k
=
top_k
,
world_size
=
world_size
,
mp_group
=
mp_group
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment