expert_utils.py 1.98 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
import torch


4
5
def get_expert_param_size(e, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
6
7
8
    return sum(map(lambda x: x.numel(), e.parameters()))
    

9
10
def get_expert_params(e, out, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
11
12
13
14
    offset = 0
    for n, p in e.named_parameters():
        seg = out[offset:offset + p.numel()]
        offset += p.numel()
Rick Ho's avatar
Rick Ho committed
15
        seg.copy_(p.data.flatten())
Rick Ho's avatar
Rick Ho committed
16
17


18
19
def stash_expert_params(e, params, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
20
21
    if not hasattr(e, 'expert_param_stash'):
        setattr(e, 'expert_param_stash', dict())
22
        setattr(e, 'expert_grad_stash', dict())
Rick Ho's avatar
Rick Ho committed
23
24
25
26
    offset = 0
    for n, p in e.named_parameters():
        if n not in e.expert_param_stash:
            e.expert_param_stash[n] = p.data.clone()
27
            e.expert_grad_stash[n] = p.grad.clone() if p.grad is not None else None
Rick Ho's avatar
Rick Ho committed
28
29
30
31
        with torch.no_grad():
            seg = params[offset:offset + p.numel()]
            offset += p.numel()
            p.copy_(seg.reshape(p.shape))
32
            p.grad = None
Rick Ho's avatar
Rick Ho committed
33
34


35
36
def pop_expert_params(e, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
37
38
    if not hasattr(e, 'expert_param_stash'):
        return
zms1999's avatar
zms1999 committed
39
40
    if not e.expert_param_stash:
        return
Rick Ho's avatar
Rick Ho committed
41
42
43
    for n, p in e.named_parameters():
        with torch.no_grad():
            p.copy_(e.expert_param_stash[n])
44
45
            if e.expert_grad_stash[n] is not None:
                p.grad = e.expert_grad_stash[n].clone()
Rick Ho's avatar
Rick Ho committed
46
    e.expert_param_stash.clear()
47
    e.expert_grad_stash.clear()
Rick Ho's avatar
Rick Ho committed
48
49


50
51
def collect_expert_grads(e, grads, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
52
53
54
55
56
    offset = 0
    for _, p in e.named_parameters():
        seg = grads[offset:offset + p.numel()]
        offset += p.numel()
        if p.grad is not None:
Rick Ho's avatar
Rick Ho committed
57
            seg.copy_(p.grad.flatten())
Rick Ho's avatar
Rick Ho committed
58
59
60
61
62
            p.grad = None
        else:
            seg.zero_()


63
64
def set_grads(e, grads, idx):
    e = e[idx]
Rick Ho's avatar
Rick Ho committed
65
66
67
68
69
    offset = 0
    for n, p in e.named_parameters():
        seg = grads[offset:offset + p.numel()]
        offset += p.numel()
        if p.grad is None:
zms1999's avatar
zms1999 committed
70
            p.grad = seg.clone().reshape(p.shape)
Rick Ho's avatar
Rick Ho committed
71
        else:
Rick Ho's avatar
Rick Ho committed
72
            p.grad += seg.reshape(p.shape)