mem_transformer.py 47.5 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
import sys
import math
import functools

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
Jiezhong Qiu's avatar
Jiezhong Qiu committed
10
#  import torch_sparse
Zhilin Yang's avatar
init  
Zhilin Yang committed
11
12

sys.path.append('utils')
13
from proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax, Projection
Zhilin Yang's avatar
init  
Zhilin Yang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from log_uniform_sampler import LogUniformSampler, sample_logits

class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]

34

Rick Ho's avatar
Rick Ho committed
35
# A baseline naive slow implementation
36
class MoEPositionwiseFFRaw(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
37
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, top_k=64):
38
        super(MoEPositionwiseFFRaw, self).__init__()
Jiezhong Qiu's avatar
Jiezhong Qiu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        print("MoEPositionwiseFF")

        self.top_k = top_k
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.gate = nn.Linear(d_model, d_inner)

        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_k / d_inner
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        gate = self.gate(inp)
        gate_top_k_val, gate_top_k_idx = torch.topk(gate, k=self.top_k, dim=-1, largest=True, sorted=False) # [.. x top_k]
        relu_out = F.relu(gate_top_k_val)

        x = self.dropout_middle(relu_out)

        W2_select = self.W2[gate_top_k_idx] # [.. x top_k x d_model]
        core_out = torch.einsum('ijk,ijkd->ijd', (x, W2_select)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output
Rick Ho's avatar
Rick Ho committed
86

Jiezhong Qiu's avatar
Jiezhong Qiu committed
87

Jiezhong Qiu's avatar
Jiezhong Qiu committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
def my_topk(x, k, inplace=True):
    y = x if inplace else x.clone()
    top1_val, top1_idx = torch.max(y, dim=-1)
    top1_val = top1_val.unsqueeze(-1)
    top1_idx = top1_idx.unsqueeze(-1)
    if k == 1:
        return top1_val, top1_idx
    y.scatter_(-1, top1_idx, value=float('-inf'))
    top2_val, top2_idx = torch.max(y, dim=-1)
    top2_val = top2_val.unsqueeze(-1)
    top2_idx = top2_idx.unsqueeze(-1)

    top_val = torch.cat((top1_val, top2_val), dim=-1)
    top_idx = torch.cat((top1_idx, top2_idx), dim=-1)
    return top_val, top_idx

Jiezhong Qiu's avatar
Jiezhong Qiu committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
class MultiHeadHierarchicalMoEPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_block=16, top_block=2):
        super(MultiHeadHierarchicalMoEPositionwiseFF, self).__init__()
        print("MultiHeadHierarchicalMoEPositionwiseFF")

        assert d_inner % n_block == 0
        assert top_block in [1, 2]
        self.top_block = top_block
        self.n_block = n_block

        d_block = d_inner // n_block
        self.d_block = d_block
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.block_net_W = nn.Parameter(torch.Tensor(d_model, top_block, n_block))
        self.block_net_b = nn.Parameter(torch.Tensor(top_block, n_block))

        self.W1 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b1 = nn.Parameter(torch.Tensor(n_block, d_block))

        self.W2 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_block / n_block
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

        #  self.scale = 1 / (d_model ** 0.5)
        self.reset_parameter()

    def reset_parameter(self):
        temp = nn.Linear(self.d_model, self.d_inner)
        self.W1.data = temp.weight.data.view(self.n_block, self.d_block, self.d_model)
        self.b1.data = temp.bias.data.view(self.n_block, self.d_block)
        temp = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp.weight.data.transpose(0, 1).contiguous().view(self.n_block, self.d_block, self.d_model)
        self.b2.data = temp.bias.data
        for i in range(self.top_block):
            temp = nn.Linear(self.d_model, self.n_block)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
149
150
            self.block_net_W.data[:, i] = temp.weight.data.transpose(0, 1).contiguous()
            self.block_net_b.data[i] = temp.bias.data
Jiezhong Qiu's avatar
Jiezhong Qiu committed
151
152
153
154
155
156
157
158

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        block = torch.einsum("ibd,dan->iban", (inp, self.block_net_W)) + self.block_net_b # [.. x top_block x n_block ]

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
159
160
        block_val, block_idx = my_topk(block, k=1, inplace=True)
        # block_val, block_idx = torch.topk(block, k=1, dim=-1, largest=True, sorted=False) # [.. x top_k x 1]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        block_val = block_val.squeeze(-1)
        block_idx = block_idx.squeeze(-1)

        gate = F.softmax(block_val, dim=-1)

        W1_block = self.W1[block_idx] # [.. x top_k x d_block x d_model]
        b1_block = self.b1[block_idx] # [.. x top_k x d_block]

        x = torch.einsum('ibd,ibnhd->ibnh', (inp, W1_block)) + b1_block # [.. x top_k x d_block]
        #  x = x + block_val.unsqueeze(-1) # somehow like residual

        x = x * gate.unsqueeze(-1)

        relu_out = F.relu(x)
        relu_out = self.dropout_middle(relu_out)

        W2_block = self.W2[block_idx] # [.. x top_k x d_model]

        core_out = torch.einsum('ibnh,ibnhd->ibd', (x, W2_block)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output


Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
189
class HierarchicalMoEPositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
190
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_block=16, top_block=2):
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
191
192
193
        super(HierarchicalMoEPositionwiseFF, self).__init__()
        print("HierarchicalMoEPositionwiseFF")

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
194
        assert d_inner % n_block == 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
195
        assert top_block in [1, 2]
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
196
197
198
199
200
201
202
203
204
        self.top_block = top_block
        self.n_block = n_block

        d_block = d_inner // n_block
        self.d_block = d_block
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
205
        self.block_net = nn.Linear(d_model, n_block, bias=True)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

        self.W1 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b1 = nn.Parameter(torch.Tensor(n_block, d_block))

        self.W2 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_block / n_block
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
221
        #  self.scale = 1 / (d_model ** 0.5)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.reset_parameter()

    def reset_parameter(self):
        temp = nn.Linear(self.d_model, self.d_inner)
        self.W1.data = temp.weight.data.view(self.n_block, self.d_block, self.d_model)
        self.b1.data = temp.bias.data.view(self.n_block, self.d_block)
        temp = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp.weight.data.transpose(0, 1).contiguous().view(self.n_block, self.d_block, self.d_model)
        self.b2.data = temp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        block = self.block_net(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
238

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
239
240
        #  block_val, block_idx = my_topk(block, k=self.top_block)
        block_val, block_idx = torch.topk(block, k=self.top_block, dim=-1, largest=True, sorted=False) # [.. x top_k]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
241

Jiezhong Qiu's avatar
Jiezhong Qiu committed
242
        gate = F.softmax(block_val, dim=-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
243
244
245
246

        W1_block = self.W1[block_idx] # [.. x top_k x d_block x d_model]
        b1_block = self.b1[block_idx] # [.. x top_k x d_block]

Jiezhong Qiu's avatar
Jiezhong Qiu committed
247
        x = torch.einsum('ibd,ibnhd->ibnh', (inp, W1_block)) + b1_block # [.. x top_k x d_block]
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
248
        #  x = x + block_val.unsqueeze(-1) # somehow like residual
Jiezhong Qiu's avatar
Jiezhong Qiu committed
249

Jiezhong Qiu's avatar
Jiezhong Qiu committed
250
        x = x * gate.unsqueeze(-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        relu_out = F.relu(x)
        relu_out = self.dropout_middle(relu_out)

        W2_block = self.W2[block_idx] # [.. x top_k x d_model]

        core_out = torch.einsum('ibnh,ibnhd->ibd', (x, W2_block)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Jiezhong Qiu's avatar
Jiezhong Qiu committed
266
267
268
269
class SparsePositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(SparsePositionwiseFF, self).__init__()
        print("SparsePositionwiseFF")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
270

Jiezhong Qiu's avatar
Jiezhong Qiu committed
271
272
273
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout
Jiezhong Qiu's avatar
Jiezhong Qiu committed
274

Jiezhong Qiu's avatar
Jiezhong Qiu committed
275
276
277
278
279
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
            nn.ReLU(inplace=True),
            nn.Dropout(dropout)
            )
Jiezhong Qiu's avatar
Jiezhong Qiu committed
280

Jiezhong Qiu's avatar
Jiezhong Qiu committed
281
282
        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
283

Jiezhong Qiu's avatar
Jiezhong Qiu committed
284
285
        self.layer_norm = nn.LayerNorm(d_model)
        self.pre_lnorm = pre_lnorm
Jiezhong Qiu's avatar
Jiezhong Qiu committed
286

Jiezhong Qiu's avatar
Jiezhong Qiu committed
287
288
        self.dropout_final = nn.Dropout(dropout)
        self.reset_parameter()
Jiezhong Qiu's avatar
Jiezhong Qiu committed
289

Jiezhong Qiu's avatar
Jiezhong Qiu committed
290
291
292
293
    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data
Jiezhong Qiu's avatar
Jiezhong Qiu committed
294

Jiezhong Qiu's avatar
Jiezhong Qiu committed
295
296
297
298
    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
299

Jiezhong Qiu's avatar
Jiezhong Qiu committed
300
301
302
303
304
        relu_out = self.CoreNet_1(inp).view(-1, self.d_inner)
        sparse_relu_out = torch_sparse.SparseTensor.from_dense(relu_out)
        core_out = torch_sparse.matmul(sparse_relu_out, self.W2) + self.b2
        core_out = core_out.view(inp.size(0), inp.size(1), self.d_model)
        core_out = self.dropout_final(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
305

Jiezhong Qiu's avatar
Jiezhong Qiu committed
306
307
308
        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
309

Jiezhong Qiu's avatar
Jiezhong Qiu committed
310
        return output
Jiezhong Qiu's avatar
Jiezhong Qiu committed
311
312
313
314
315
316
317
318

class MultiHeadPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_head=2):
        super(MultiHeadPositionwiseFF, self).__init__()
        print("MultiHeadPositionwiseFF")

        assert d_model % n_head == 0
        self.n_head = n_head
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
319
        d_head = d_model // n_head
Jiezhong Qiu's avatar
Jiezhong Qiu committed
320
321
322
323
324
        self.d_head = d_head
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
Jiezhong Qiu committed
325
        self.q_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
326
327
328
329
330
331
332

        self.k_weight = nn.Parameter(torch.Tensor(n_head, d_inner, d_head))
        self.k_bias = nn.Parameter(torch.Tensor(n_head, d_inner))

        self.v_weight = nn.Parameter(torch.Tensor(n_head, d_head, d_inner))
        self.v_bias = nn.Parameter(torch.Tensor(n_head, d_head))

Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
333
        #self.o_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        self.dropout = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        for i in range(self.n_head):
            tmp = nn.Linear(self.d_head, self.d_inner)
            self.k_weight.data[i] = tmp.weight.data
            self.k_bias.data[i] = tmp.bias.data

            tmp = nn.Linear(self.d_inner, self.d_head)
            self.v_weight.data[i] = tmp.weight.data
            self.v_bias.data[i] = tmp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
358
359
        head_q = self.q_net(inp)
        head_q = head_q.view(inp.size(0), inp.size(1), self.n_head, self.d_head) # [.. x n_head x d_head]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
360
361
362
363
364
365
366

        attn_score = torch.einsum('ibnd,nhd->ibnh', (head_q, self.k_weight)) + self.k_bias # [.. x n_head x d_inner]
        attn_score = F.relu(attn_score)
        attn_score = self.dropout(attn_score)

        attn_vec = torch.einsum('ibnh,ndh->ibnd', (attn_score, self.v_weight)) + self.v_bias

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
367
        attn_vec = attn_vec.contiguous().view(inp.size(0), inp.size(1), self.d_model)
Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
368
369
        # core_out = self.o_net(attn_vec)
        core_out = self.dropout(attn_vec)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
370
371
372
373
374
375
376

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
377
class PositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
378
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, use_softmax=True):
Zhilin Yang's avatar
init  
Zhilin Yang committed
379
380
381
382
383
384
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

385
386
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
Jiezhong Qiu's avatar
Jiezhong Qiu committed
387
            nn.Softmax(dim=-1) if use_softmax else nn.ReLU(inplace=True)
388
389
        )
        self.CoreNet_2 = nn.Sequential(
Zhilin Yang's avatar
init  
Zhilin Yang committed
390
391
392
393
394
395
396
397
398
399
400
401
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
402
403
            relu_out = self.CoreNet_1(self.layer_norm(inp))
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
404
405
406
407
408

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
409
410
            relu_out = self.CoreNet_1(inp)
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
411
412
413
414

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
415
416
        return output
        #  return output, relu_out.detach()
Zhilin Yang's avatar
init  
Zhilin Yang committed
417

Jiezhong Qiu's avatar
Jiezhong Qiu committed
418
419
420
class ExtendedMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 pre_lnorm=False):
421
422
        super(ExtendedMultiHeadAttn, self).__init__()
        print("ExtendedMultiHeadAttn")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
423
424
425
426
427
428
429
430
431
432
433

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
434
        self.o_net = nn.Linear(n_head * d_head * 2, d_model, bias=False)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
435
436
437
438
439
440
441

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

442
443
444
        #  self.coeff = nn.Parameter(torch.Tensor(n_head, 2))
        #  nn.init.uniform_(self.coeff, a=-1, b=1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
            mem_len = mems.size(0)
        else:
            c = h
            mem_len = 0

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(c)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
472
                attn_score[mem_len:].masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
473
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
474
                attn_score[mem_len:].masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
475
476


477
        mem2other_attn = attn_mask.new_ones(mem_len, c.size(0))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
478
        mem2other_attn[:, :mem_len] = 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
479
        attn_score[:mem_len].masked_fill_(mem2other_attn[:, :, None, None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
480
481
482
483
484
485
486

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
487
488
489
490
491
492
493
        attn_vec_quad = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, attn_vec))
        # [qlen x bsz x n_head x d_head x 2]
        attn_vecs = torch.cat([attn_vec.unsqueeze(-1), attn_vec_quad.unsqueeze(-1)], dim=-1)

        #  attn_vec = torch.einsum('ibndt,nt->ibnd', (attn_vecs, self.coeff))
        attn_vec = attn_vecs.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head * 2)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

        attn_vec = attn_vec[mem_len:]

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
510
class MultiHeadAttn(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
511
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
Zhilin Yang's avatar
init  
Zhilin Yang committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
                 pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
558
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
559
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
560
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(RelMultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
                               device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=1)

        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

    def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

        rr_head_q = w_head_q + r_r_bias
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
705
                    attn_mask[None,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
706
707
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
708
                    attn_mask[:,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
791
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
792
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
793
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

Rick Ho's avatar
Rick Ho committed
819
820
821
822
823
824

from fmoe import FMoETransformerMLP
class CustomizedMoEPositionwiseFF(FMoETransformerMLP):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        def activation(x):
            return self.dropout(F.relu(x))
825
        super().__init__(num_expert=64, d_model=d_model, d_hidden=d_inner, topk=2,
Rick Ho's avatar
Rick Ho committed
826
827
                pre_lnorm=pre_lnorm, activation=activation)
        self.dropout = nn.Dropout(dropout)
Rick Ho's avatar
Rick Ho committed
828
829
830
        self.bias = nn.Parameter(
            torch.zeros(d_model, dtype=torch.float32)
        )
Rick Ho's avatar
Rick Ho committed
831
832

    def forward(self, x):
Rick Ho's avatar
Rick Ho committed
833
834
        x = super().forward(x)
        return x + self.bias
Rick Ho's avatar
Rick Ho committed
835
836


Zhilin Yang's avatar
init  
Zhilin Yang committed
837
838
839
840
841
class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
842
        #  self.dec_attn = ExtendedMultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
843
        self.pos_ff = CustomizedMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
844
845
846
847
848
849
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
850
851
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
852

Jiezhong Qiu's avatar
Jiezhong Qiu committed
853
854
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
855
856
857
858
859
860
861
862

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
863
        self.pos_ff = CustomizedMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
864
865
866
867
868
869
870
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
871
872
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
873

Jiezhong Qiu's avatar
Jiezhong Qiu committed
874
875
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
876
877
878
879
880
881
882
883

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
884
        self.pos_ff = CustomizedMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
885
886
887
888
889
890
891
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
892
893
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
894

Jiezhong Qiu's avatar
Jiezhong Qiu committed
895
896
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
897
898


899

Zhilin Yang's avatar
init  
Zhilin Yang committed
900
class AdaptiveEmbedding(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
901
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
917
918
        self.emb_projs = nn.ModuleList()

Zhilin Yang's avatar
init  
Zhilin Yang committed
919
920
921
922
923
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
924
                self.emb_projs.append(Projection(d_proj, d_embed))
Zhilin Yang's avatar
init  
Zhilin Yang committed
925
926
927
928
929
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
930
                self.emb_projs.append(Projectio(d_proj, d_emb_i))
Zhilin Yang's avatar
init  
Zhilin Yang committed
931
932
933
934
935

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
936
                embed  = F.linear(embed, self.emb_projs[0].weight)
Zhilin Yang's avatar
init  
Zhilin Yang committed
937
938
939
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
940
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
Zhilin Yang's avatar
init  
Zhilin Yang committed
941
942
943
944
945
946
947
948
949
950
951
952
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
953
                emb_i = F.linear(emb_i, self.emb_projs[i].weight)
Zhilin Yang's avatar
init  
Zhilin Yang committed
954
955
956
957
958
959
960
961
962
963
964

                emb_flat.index_copy_(0, indices_i, emb_i)

            embed = emb_flat.view(*inp.size(), self.d_proj)

        embed.mul_(self.emb_scale)

        return embed

class MemTransformerLM(nn.Module):
    def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
965
                 dropout, dropatt, tie_weight=True, d_embed=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
966
                 div_val=1, tie_projs=[False], pre_lnorm=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
967
                 tgt_len=None, ext_len=None, mem_len=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
968
                 cutoffs=[], adapt_inp=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
969
                 same_length=False, attn_type=0, clamp_len=-1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
970
971
972
973
974
975
976
977
978
979
                 sample_softmax=-1):
        super(MemTransformerLM, self).__init__()
        self.n_token = n_token

        d_embed = d_model if d_embed is None else d_embed
        self.d_embed = d_embed
        self.d_model = d_model
        self.n_head = n_head
        self.d_head = d_head

Jiezhong Qiu's avatar
Jiezhong Qiu committed
980
        self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs,
Zhilin Yang's avatar
init  
Zhilin Yang committed
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
                                          div_val=div_val)

        self.drop = nn.Dropout(dropout)

        self.n_layer = n_layer

        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len
        self.max_klen = tgt_len + ext_len + mem_len

        self.attn_type = attn_type

        self.layers = nn.ModuleList()
        if attn_type == 0: # the default attention
            for i in range(n_layer):
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type == 1: # learnable embeddings
            for i in range(n_layer):
                self.layers.append(
                    RelLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type in [2, 3]: # absolute embeddings
            for i in range(n_layer):
                self.layers.append(
                    DecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )

        self.sample_softmax = sample_softmax
        # use sampled softmax
        if sample_softmax > 0:
            self.out_layer = nn.Linear(d_model, n_token)
            if tie_weight:
                self.out_layer.weight = self.word_emb.weight
            self.tie_weight = tie_weight
            self.sampler = LogUniformSampler(n_token, sample_softmax)

        # use adaptive softmax (including standard softmax)
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1030
            self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
                                                    cutoffs, div_val=div_val)

            if tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight

            if tie_projs:
                for i, tie_proj in enumerate(tie_projs):
                    if tie_proj and div_val == 1 and d_model != d_embed:
1040
                        self.crit.out_projs[i].weight = self.word_emb.emb_projs[0].weight
Zhilin Yang's avatar
init  
Zhilin Yang committed
1041
                    elif tie_proj and div_val != 1:
1042
                        self.crit.out_projs[i].weight = self.word_emb.emb_projs[i].weight
Zhilin Yang's avatar
init  
Zhilin Yang committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

        self.same_length = same_length
        self.clamp_len = clamp_len

        self._create_params()

    def backward_compatible(self):
        self.sample_softmax = -1

    def _create_params(self):
        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

1075
    def init_mems(self, x):
Zhilin Yang's avatar
init  
Zhilin Yang committed
1076
1077
1078
        if self.mem_len > 0:
            mems = []
            for i in range(self.n_layer+1):
1079
                empty = torch.empty(0, dtype=x.dtype, device=x.device)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

    def _forward(self, dec_inp, mems=None):
        qlen, bsz = dec_inp.size()

        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1130
        #  relu_outs = []
Zhilin Yang's avatar
init  
Zhilin Yang committed
1131
        if self.attn_type == 0: # default
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1132
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1144
1145
                #  core_out, relu_out = layer(core_out, pos_emb, self.r_w_bias,
                core_out = layer(core_out, pos_emb, self.r_w_bias,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1146
1147
                        self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1148
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1160
1161
                #  core_out, relu_out = layer(core_out, r_emb, self.r_w_bias[i],
                core_out = layer(core_out, r_emb, self.r_w_bias[i],
Zhilin Yang's avatar
init  
Zhilin Yang committed
1162
1163
                        r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1164
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1179
1180
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1181
1182
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1183
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1201
1202
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1203
1204
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1205
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1206
1207
1208
1209
1210

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1211
1212
        return core_out, new_mems
        #  return core_out, new_mems, relu_outs
Zhilin Yang's avatar
init  
Zhilin Yang committed
1213
1214
1215
1216
1217
1218

    def forward(self, data, target, *mems):
        # nn.DataParallel does not allow size(0) tensors to be broadcasted.
        # So, have to initialize size(0) mems inside the model forward.
        # Moreover, have to return new_mems to allow nn.DataParallel to piece
        # them together.
1219
        if not mems: mems = self.init_mems(data)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1220
1221

        tgt_len = target.size(0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1222
1223
        hidden, new_mems = self._forward(data, mems=mems)
        #  hidden, new_mems, relu_outs = self._forward(data, mems=mems)
1224
1225

        #  relu_outs = torch.cat([relu_out.unsqueeze(-1) for relu_out in relu_outs], dim=-1)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1226
1227
1228
1229
1230
1231
1232
1233

        pred_hid = hidden[-tgt_len:]
        if self.sample_softmax > 0 and self.training:
            assert self.tie_weight
            logit = sample_logits(self.word_emb,
                self.out_layer.bias, target, pred_hid, self.sampler)
            loss = -F.log_softmax(logit, -1)[:, :, 0]
        else:
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
1234
            loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.contiguous().view(-1))
Zhilin Yang's avatar
init  
Zhilin Yang committed
1235
1236
1237
            loss = loss.view(tgt_len, -1)

        if new_mems is None:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1238
1239
            return [loss]
            #  return [relu_outs, loss]
Zhilin Yang's avatar
init  
Zhilin Yang committed
1240
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1241
1242
            return [loss] + new_mems
            #  return [relu_outs, loss] + new_mems
Zhilin Yang's avatar
init  
Zhilin Yang committed
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description='unit test')

    parser.add_argument('--n_layer', type=int, default=4, help='')
    parser.add_argument('--n_rel_layer', type=int, default=4, help='')
    parser.add_argument('--n_head', type=int, default=2, help='')
    parser.add_argument('--d_head', type=int, default=2, help='')
    parser.add_argument('--d_model', type=int, default=200, help='')
    parser.add_argument('--d_embed', type=int, default=200, help='')
    parser.add_argument('--d_inner', type=int, default=200, help='')
    parser.add_argument('--dropout', type=float, default=0.0, help='')
    parser.add_argument('--cuda', action='store_true', help='')
    parser.add_argument('--seed', type=int, default=1111, help='')
    parser.add_argument('--multi_gpu', action='store_true', help='')

    args = parser.parse_args()

    device = torch.device("cuda" if args.cuda else "cpu")

    B = 4
    tgt_len, mem_len, ext_len = 36, 36, 0
    data_len = tgt_len * 20
    args.n_token = 10000

    import data_utils

    data = torch.LongTensor(data_len*B).random_(0, args.n_token).to(device)
    diter = data_utils.LMOrderedIterator(data, B, tgt_len, device=device, ext_len=ext_len)

    cutoffs = [args.n_token // 2]
    tie_projs = [False] + [True] * len(cutoffs)

    for div_val in [1, 2]:
        for d_embed in [200, 100]:
            model = MemTransformerLM(args.n_token, args.n_layer, args.n_head,
                            args.d_model, args.d_head, args.d_inner, args.dropout,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1282
1283
                            dropatt=args.dropout, tie_weight=True,
                            d_embed=d_embed, div_val=div_val,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1284
                            tie_projs=tie_projs, pre_lnorm=True,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1285
                            tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1286
1287
1288
1289
1290
1291
1292
1293
1294
                            cutoffs=cutoffs, attn_type=0).to(device)

            print(sum(p.numel() for p in model.parameters()))

            mems = tuple()
            for idx, (inp, tgt, seqlen) in enumerate(diter):
                print('batch {}'.format(idx))
                out = model(inp, tgt, *mems)
                mems = out[1:]