moe.cpp 5.9 KB
Newer Older
Jiezhong Qiu's avatar
can run  
Jiezhong Qiu committed
1
2
3
4
5
6
#include <torch/extension.h>

#include <cstdio>
#include <iostream>
#include <vector>

7
#include "moe_cuda_kernel.h"
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
8
9
10
11
12
13

// NOTE: AT_ASSERT has become AT_CHECK on master after 0.4.
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)

Rick Ho's avatar
Rick Ho committed
14
std::vector<torch::Tensor> moe_expert_count(
15
16
17
18
        torch::Tensor gate, 
        size_t num_expert) {
    CHECK_INPUT(gate);
    return moe_cuda_expert_count(gate, num_expert);
Rick Ho's avatar
Rick Ho committed
19
20
21
}

std::vector<torch::Tensor> moe_local_scatter(
22
23
24
25
        torch::Tensor input,
        torch::Tensor pos) {
    CHECK_INPUT(input);
    return moe_cuda_local_scatter(input, pos);
Rick Ho's avatar
Rick Ho committed
26
27
28
}

std::vector<torch::Tensor> moe_local_gather(
29
30
31
32
        torch::Tensor output_buf,
        torch::Tensor pos) {
    CHECK_INPUT(output_buf);
    return moe_cuda_local_gather(output_buf, pos);
Rick Ho's avatar
Rick Ho committed
33
34
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
35
std::vector<torch::Tensor> moe_forward(
36
        torch::Tensor input_buf,     		// [batch_size x in_feat]
37
        torch::Tensor expert_count,  		// [num_expert]
38
        torch::Tensor weight,        		// [num_expert x out_feat x in_feat]
39
        at::optional<torch::Tensor> bias_o  // [num_expert x out_feat] or None
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
40
        ) {
41

Rick Ho's avatar
Rick Ho committed
42
    CHECK_INPUT(input_buf);
Rick Ho's avatar
Rick Ho committed
43
    CHECK_INPUT(weight);
44
45
46
47
48
49
50
51
    
    // check if bias is valid in case it exists
    if (bias_o.has_value()) {
        auto bias = bias_o.value();
        CHECK_INPUT(bias);
    }
    
    return moe_cuda_forward(input_buf, expert_count, weight, bias_o);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
52
53
}

Jiezhong Qiu's avatar
Jiezhong Qiu committed
54
std::vector<torch::Tensor> moe_backward(
55
56
        torch::Tensor grad_output_buf, 		// [batch_size x out_feat]
        torch::Tensor input_buf,       		// [batch_size x in_feat]
57
        torch::Tensor expert_count,         // [num_expert]
58
        torch::Tensor weight,           	// [num_expert x out_feat x in_feat]
59
        at::optional<torch::Tensor> bias_o  // [num_expert x out_feat] or None
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
60
        ) {
61
    
Rick Ho's avatar
Rick Ho committed
62
63
    CHECK_INPUT(grad_output_buf);
    CHECK_INPUT(input_buf);
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
64
    CHECK_INPUT(weight);
65
66
67
68
69
70

    // check if bias is valid in case it exists
    if (bias_o.has_value()) {
        auto bias = bias_o.value();
        CHECK_INPUT(bias);
    }
71
    
72
    return moe_cuda_backward(grad_output_buf, input_buf, expert_count, weight, bias_o);
Jiezhong Qiu's avatar
can run  
Jiezhong Qiu committed
73
74
}

75
76
#ifdef MOE_USE_NCCL

Rick Ho's avatar
Rick Ho committed
77
std::vector<torch::Tensor> moe_expert_exchange(
78
79
80
        torch::Tensor local_expert_count,
        size_t num_expert, size_t n_workers) {
    return moe_cuda_expert_exchange(local_expert_count, num_expert, n_workers);
Rick Ho's avatar
Rick Ho committed
81
82
}

83
std::vector<torch::Tensor> moe_global_scatter(
84
85
86
87
88
89
90
91
        torch::Tensor input_buf,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        size_t batch_size, size_t n_workers) {
    CHECK_INPUT(input_buf);
    return moe_cuda_global_scatter(input_buf,
               local_expert_count, global_expert_count,
            batch_size, n_workers);
92
93
94
}

std::vector<torch::Tensor> moe_global_gather(
95
96
97
98
99
100
101
102
        torch::Tensor output_buf,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        size_t batch_size, size_t n_workers) {
    CHECK_INPUT(output_buf);
    return moe_cuda_global_gather(output_buf,
               local_expert_count, global_expert_count,
            batch_size, n_workers);
103
104
}

Rick Ho's avatar
Rick Ho committed
105
106

std::vector<torch::Tensor> moe_global_fused_forward(
107
        torch::Tensor input_buf,
Rick Ho's avatar
Rick Ho committed
108
        torch::Tensor weight,
109
110
111
112
113
114
115
116
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        long global_batch_size, long local_batch_size, long n_workers) {
    CHECK_INPUT(input_buf);
    CHECK_INPUT(weight);
    return moe_cuda_global_fused_forward(
            input_buf, weight, local_expert_count, global_expert_count,
            global_batch_size, local_batch_size, n_workers);
Rick Ho's avatar
Rick Ho committed
117
118
}

Rick Ho's avatar
Rick Ho committed
119
120
121
122
123
#include <c10d/ProcessGroupNCCL.hpp>
#include "cuda_stream_manager.h"

class HackNCCLGroup: public c10d::ProcessGroupNCCL {
public:
124
125
    ncclComm_t getcomm(at::Device dev) {
        auto key = std::to_string(dev.index());
126
#ifdef ENABLE_NCCL_P2P_SUPPORT
127
128
129
130
131
132
133
134
135
136
137
138
        ncclUniqueId ncclID;
        int rank = getRank();
        if (rank == 0) {
            ncclGetUniqueId(&ncclID);
        }
        broadcastUniqueNCCLID(&ncclID,
                c10d::OpType::SEND,
                "fastmoe_nccl_comm",
                rank);
        ncclComm_t comm;
        ncclCommInitRank(&comm, getSize(), ncclID, rank);
        return comm;
139
#else
140
141
142
143
144
145
146
147
148
        auto v = getNCCLComm(key, {dev});
        if (v.size() == 0) {
            std::cerr << "PyTorch has nothing\n";
            return 0;
        }
        int count;
        ncclCommCount(v[0]->getNcclComm(), &count);
        std::cerr << "PyTorch has " << v.size() << " comms, comm 0 size " << count << "\n";
        return v[0]->getNcclComm();
Rick Ho's avatar
Rick Ho committed
149
#endif
150
    }
Rick Ho's avatar
Rick Ho committed
151
152
153
};

void moe_ensure_nccl(c10d::ProcessGroupNCCL& p, torch::Tensor t) {
154
155
156
157
158
159
160
161
162
163
164
    auto smgr = getCudaStreamManager(t.device().index());
    if (smgr->ncclgood) {
        return;
    }
    HackNCCLGroup* h = (HackNCCLGroup*)(void*)&p;
    smgr->ncclcomm = h->getcomm(t.device());
    if (smgr->ncclcomm != 0) {
        smgr->ncclgood = 1;
    } else {
        std::cerr << "Nccl initialization failed\n";
    }
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
165
}
Rick Ho's avatar
Rick Ho committed
166
167

#endif  // MOE_USE_NCCL
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
168
169

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
Rick Ho's avatar
Rick Ho committed
170
171
172
  m.def("expert_count", &moe_expert_count, "MoE expert count (CUDA)");
  m.def("local_scatter", &moe_local_scatter, "MoE local scatter (CUDA)");
  m.def("local_gather", &moe_local_gather, "MoE local gather (CUDA)");
173
#ifdef MOE_USE_NCCL
Rick Ho's avatar
Rick Ho committed
174
  m.def("expert_exchange", &moe_expert_exchange, "MoE expert exchange (CUDA)");
175
176
  m.def("global_scatter", &moe_global_scatter, "MoE global scatter (CUDA)");
  m.def("global_gather", &moe_global_gather, "MoE global gather (CUDA)");
Rick Ho's avatar
Rick Ho committed
177
  m.def("global_fused_forward", &moe_global_fused_forward, 
178
          "MoE global gather (CUDA)");
Rick Ho's avatar
Rick Ho committed
179
  m.def("ensure_nccl", &moe_ensure_nccl, "MoE ensure torch nccl comm");
180
#endif
Jiezhong Qiu's avatar
Jiezhong Qiu committed
181
182
  m.def("forward", &moe_forward, "MoE forward (CUDA)");
  m.def("backward", &moe_backward, "MoE backward (CUDA)");
Rick Ho's avatar
Rick Ho committed
183
}