megatron.py 24.5 KB
Newer Older
Sengxian's avatar
Sengxian committed
1
r"""
Rick Ho's avatar
Rick Ho committed
2
3
4
The adaptor to seamlessly enable FastMoE in Megatron-LM v2.0 with at most two
lines of modification.
See `examples/megatron` for usage instructions.
Sengxian's avatar
Sengxian committed
5
"""
6
import os
7
import sys
Rick Ho's avatar
Rick Ho committed
8
import math
9
10
import random
from collections import OrderedDict
Jiezhong Qiu's avatar
Jiezhong Qiu committed
11
import numpy as np
Rick Ho's avatar
Rick Ho committed
12
import torch
Rick Ho's avatar
Rick Ho committed
13
import torch.nn as nn
Rick Ho's avatar
Rick Ho committed
14
import torch.nn.functional as F
Rick Ho's avatar
Rick Ho committed
15
16
17

from .transformer import FMoETransformerMLP
from .distributed import DistributedGroupedDataParallel
18
19
from .balance import update_balance_profile, reset_balance_profile
from .utils import get_torch_default_comm
Rick Ho's avatar
Rick Ho committed
20
21


22
class _FakeMegatronMLP(nn.Module):
Sengxian's avatar
Sengxian committed
23
    r"""
24
    A fake mlp without model parallelism for correctness testing
Sengxian's avatar
Sengxian committed
25
26
    """

Rick Ho's avatar
Rick Ho committed
27
    def __init__(self, args, _):
Rick Ho's avatar
Rick Ho committed
28
29
30
        super().__init__()
        self.fc1 = nn.Linear(args.hidden_size, args.hidden_hidden_size)
        self.fc2 = nn.Linear(args.hidden_hidden_size, args.hidden_size)
Sengxian's avatar
Sengxian committed
31

Rick Ho's avatar
Rick Ho committed
32
    def forward(self, x):
Sengxian's avatar
Sengxian committed
33
        r"""
Rick Ho's avatar
Rick Ho committed
34
        Directly use GeLU
Sengxian's avatar
Sengxian committed
35
        """
Rick Ho's avatar
Rick Ho committed
36
37
38
39
40
        x = self.fc1(x)
        x = F.gelu(x)
        x = self.fc2(x)
        return x, torch.zeros_like(x)

Sengxian's avatar
Sengxian committed
41

42
def _megatron_init_method(self, rng, sigma):
Sengxian's avatar
Sengxian committed
43
    r"""
44
45
    Init method based on N(0, sigma).
    Copied from Megatron-LM
Sengxian's avatar
Sengxian committed
46
    """
47
48
49
    device = self.weight.device
    dtype = self.weight.dtype
    weight = rng.normal(loc=0.0, scale=sigma, size=tuple(self.weight.size()))
Rick Ho's avatar
Rick Ho committed
50
    self.weight.data = torch.from_numpy(weight).to(dtype=dtype, device=device)
51
52
53
54
55

    if self.bias is not None:
        # Always initialize bias to zero.
        with torch.no_grad():
            self.bias.zero_()
Rick Ho's avatar
Rick Ho committed
56

Sengxian's avatar
Sengxian committed
57

Rick Ho's avatar
Rick Ho committed
58
def _random_init_weight(self, rng):
Sengxian's avatar
Sengxian committed
59
    r"""
Rick Ho's avatar
Rick Ho committed
60
    Copied from torch.nn.init.kaiming_uniform_
Sengxian's avatar
Sengxian committed
61
62
63
    """
    fan = nn.init._calculate_correct_fan(self.weight[0], "fan_in")
    gain = nn.init.calculate_gain("leaky_relu", math.sqrt(5))
Rick Ho's avatar
Rick Ho committed
64
65
66
67
68
    std = gain / math.sqrt(fan)
    bound = math.sqrt(3.0) * std
    device = self.weight.device
    dtype = self.weight.dtype
    weight = rng.uniform(-bound, bound, size=tuple(self.weight.size()))
Rick Ho's avatar
Rick Ho committed
69
    self.weight.data = torch.from_numpy(weight).to(dtype=dtype, device=device)
Rick Ho's avatar
Rick Ho committed
70
71
72
73
74

    if self.bias is not None:
        fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
        bound = 1 / math.sqrt(fan_in)
        bias = rng.uniform(-bound, bound, size=tuple(self.bias.size()))
Rick Ho's avatar
Rick Ho committed
75
        self.bias.data = torch.from_numpy(bias).to(dtype=dtype, device=device)
Rick Ho's avatar
Rick Ho committed
76
77


78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
balance_dict = {}
num_layers = 0


def reset_gate_hook():
    from megatron import get_args

    global balance_dict, num_layers
    reset_balance_profile(balance_dict, num_layers, get_args().balance_strategy)


def get_balance_profile():
    global balance_dict
    return balance_dict


def generate_megatron_gate_hook(layer_idx, num_expert_global):
    from megatron import get_args

    balance_strategy = get_args().balance_strategy

    def megatron_gate_hook(gate_top_k_idx, gate_score_top_k, gate_state_dict):
        global balance_dict
        update_balance_profile(
            balance_dict,
            gate_top_k_idx,
            gate_score_top_k,
            gate_state_dict,
            layer_idx,
            num_expert_global,
            balance_strategy,
        )

    return megatron_gate_hook


def add_fmoe_args(parser):
    group = parser.add_argument_group(title="fastmoe")

    group.add_argument("--fmoefy", action="store_true")
    group.add_argument("--num-experts", type=int, default=None)
    group.add_argument("--top-k", type=int, default=2)
    group.add_argument("--balance-loss-weight", type=float, default=1)
    group.add_argument("--balance-strategy", type=str, default=None)

    return parser


def add_balance_log(writer, iteration):
    from megatron import is_last_rank

    balance_dict_tensor = torch.vstack(
        [torch.tensor(item, device=item[0].device) for item in balance_dict.values()]
    ).detach()
    world_group = get_torch_default_comm()
    world_size = torch.distributed.get_world_size(group=world_group)
    torch.distributed.all_reduce(balance_dict_tensor, group=world_group)
    balance_dict_tensor /= world_size

    if writer and is_last_rank():
        for idx, metric_name in enumerate(balance_dict):
            for layer_id, val in enumerate(balance_dict_tensor[idx]):
                writer.add_scalar(
                    f"balance-{metric_name}/layer-{layer_id}", val.item(), iteration
                )
            writer.add_scalar(
                f"balance-{metric_name}/all",
                balance_dict_tensor[idx].mean().item(),
                iteration,
            )

    reset_gate_hook()


def patch_forward_step(forward_step_func):
    r"""
    Patch model's forward_step_func to support balance loss
    """

    from megatron.mpu import is_pipeline_last_stage
    from megatron import get_args

    if not get_args().balance_strategy:
        return forward_step_func

    def forward_step_with_balance_loss(data_iterator, model, input_tensor):
        args = get_args()
        output = forward_step_func(data_iterator, model, input_tensor)

        if is_pipeline_last_stage():
            loss_name = args.balance_strategy + "_loss"

            (loss, state_dict), bal_loss = (
                output,
                (
                    torch.tensor(
                        balance_dict[loss_name],
                        device=balance_dict[loss_name][0].device,
                    ).mean()
                    * args.balance_loss_weight
                ).float(),
            )

            # avarage across world group
            world_group = get_torch_default_comm()
            world_size = torch.distributed.get_world_size(group=world_group)
            averaged_bal_loss = bal_loss.clone().detach()
            torch.distributed.all_reduce(averaged_bal_loss, group=world_group)
            averaged_bal_loss /= world_size

            loss += bal_loss
            state_dict[loss_name] = averaged_bal_loss

            return loss, state_dict
        else:
            return output

    return forward_step_with_balance_loss


def patch_model_provider(model_provider):
    from megatron import get_args

    def fmoefied_model_provider():
        args = get_args()
        return fmoefy(
            model_provider(),
            num_experts=args.num_experts,
            hidden_hidden_size=4 * args.hidden_size // args.top_k,
            top_k=args.top_k,
        )

    return fmoefied_model_provider


Rick Ho's avatar
Rick Ho committed
213
class MegatronMLP(FMoETransformerMLP):
Sengxian's avatar
Sengxian committed
214
    r"""
Rick Ho's avatar
Rick Ho committed
215
216
    Make the FMoETransformerMLP layer that distributes experts across
    communication group `group` to replace the original MLP layer in Megatron.
Sengxian's avatar
Sengxian committed
217
218
    """

219
    def __init__(self, args, group, layer_idx):
Sengxian's avatar
Sengxian committed
220
        assert (
221
            args.seq_length * args.micro_batch_size % args.tensor_model_parallel_size
Sengxian's avatar
Sengxian committed
222
            == 0
Rick Ho's avatar
Rick Ho committed
223
224
225
226
227
        ), "Batch size x sequence length should be multiple of mp size"
        if not args.distributed_experts:
            world_size = 1
        else:
            world_size = args.world_size
228
229
230
231
232
233
234
235
236
237
238
        gate = None
        if not args.balance_strategy or args.balance_strategy == "gshard":
            from .gates import NaiveGate

            gate = NaiveGate
        elif args.balance_strategy == "noisy":
            from .gates import NoisyGate

            gate = NoisyGate
        else:
            assert False, "Undefined balance strategy {}" % (args.balance_strategy)
Sengxian's avatar
Sengxian committed
239
240
241
242
243
244
245
246
        super().__init__(
            args.num_experts,
            top_k=args.top_k,
            d_model=args.hidden_size,
            d_hidden=args.hidden_hidden_size,
            world_size=world_size,
            mp_group=group,
            expert_dp_comm="none" if args.distributed_experts else "dp",
247
248
249
250
            gate_hook=generate_megatron_gate_hook(
                layer_idx, args.num_experts * world_size
            ),
            gate=gate,
Sengxian's avatar
Sengxian committed
251
        )
Rick Ho's avatar
Rick Ho committed
252
        self.hidden_size = args.hidden_size
Rick Ho's avatar
Rick Ho committed
253
254
255
256
        if args.distributed_experts:
            self.rank = args.rank
        else:
            self.rank = 0
257
258
        self.sigma = args.init_method_std
        self.num_layers = args.num_layers
Rick Ho's avatar
Rick Ho committed
259
260
261
        self.reset_parameters()

    def reset_parameters(self):
Sengxian's avatar
Sengxian committed
262
        r"""
Rick Ho's avatar
Rick Ho committed
263
264
        Initialize the weight as linear layers.
        As megatron is using fixed random seed for some nasty stuff, an
Rick Ho's avatar
Rick Ho committed
265
        additional numpy rng is used.
Sengxian's avatar
Sengxian committed
266
        """
Rick Ho's avatar
Rick Ho committed
267
        rng = np.random.default_rng(np.random.randint(2048) + self.rank)
268
        _megatron_init_method(self.experts.htoh4, rng, self.sigma)
269
        std = self.sigma / math.sqrt(2.0 * self.num_layers)
270
        _megatron_init_method(self.experts.h4toh, rng, std)
Rick Ho's avatar
Rick Ho committed
271
272

    def forward(self, inp):
Sengxian's avatar
Sengxian committed
273
274
275
276
        return (
            super().forward(inp),
            torch.zeros(self.hidden_size, dtype=inp.dtype, device=inp.device),
        )
Rick Ho's avatar
Rick Ho committed
277
278


Sengxian's avatar
Sengxian committed
279
280
281
282
283
284
285
286
def fmoefy(
    model,
    num_experts=None,
    distributed_experts=True,
    hidden_hidden_size=None,
    top_k=None,
):
    r"""
Rick Ho's avatar
Rick Ho committed
287
288
289
290
291
292
293
294
295
296
297
298
    Replace MLP layers in a transformer-based model in Megatron by MoE.
    * `model` should be a standard Megatron model that has
    `model.language_model.transformer.layers` as transformer layers, which is an
    array of transformer blocks that contain an `mlp` member.
    * `distributed_expert` is set to True if different experts are located in
    different workers. Otherwise, the experts on the workers are identical, and
    they are trained in data-parallel mode. This can be useful when testing on
    small models that do not require high training throughput or large parameter
    capacity.
    Note that pipeline parallel is not supported yet. When distributed experts
    are enabled, their communicator should be Megatron's
    tensor_model_parall_comm x data_parallel_comm, which is not created.
Sengxian's avatar
Sengxian committed
299
    """
Rick Ho's avatar
Rick Ho committed
300
    from megatron import get_args
Rick Ho's avatar
Rick Ho committed
301
    from megatron import mpu
Sengxian's avatar
Sengxian committed
302

Rick Ho's avatar
Rick Ho committed
303
304
305
306
    args = get_args()
    if num_experts is not None:
        args.num_experts = num_experts
    assert (
Sengxian's avatar
Sengxian committed
307
308
        "num_experts" in args
    ), "num_experts should be specified in arguments or fmoefy function"
Rick Ho's avatar
Rick Ho committed
309
310
311

    if hidden_hidden_size is not None:
        args.hidden_hidden_size = hidden_hidden_size
Sengxian's avatar
Sengxian committed
312
    elif not hasattr(args, "hidden_hidden_size"):
Rick Ho's avatar
Rick Ho committed
313
314
315
316
        args.hidden_hidden_size = args.hidden_size * 4

    if top_k is not None:
        args.top_k = top_k
Sengxian's avatar
Sengxian committed
317
    elif not hasattr(args, "top_k"):
Rick Ho's avatar
Rick Ho committed
318
319
320
321
322
323
        args.top_k = 2

    # Set distributed_experts to None to use default setting in args
    if distributed_experts is not None:
        args.distributed_experts = distributed_experts

324
325
326
327
328
329
330
331
    for idx, l in enumerate(model.language_model.transformer.layers):
        l.mlp = MegatronMLP(args, mpu.get_model_parallel_group(), idx)

    # initialize gate hook
    global num_layers, balance_dict
    num_layers = len(model.language_model.transformer.layers)
    reset_gate_hook()

Rick Ho's avatar
Rick Ho committed
332
333
334
335
    return model


class DistributedDataParallel(DistributedGroupedDataParallel):
Sengxian's avatar
Sengxian committed
336
    r"""
Rick Ho's avatar
Rick Ho committed
337
338
339
    A wrapper that is used to replace the DDP module provided by Megatron, which
    is adapted to enable the sophiscated parallel and reduction strategies in
    Fast MoE.
Sengxian's avatar
Sengxian committed
340
341
    """

Rick Ho's avatar
Rick Ho committed
342
343
    def __init__(self, module):
        from megatron import mpu
Sengxian's avatar
Sengxian committed
344

Rick Ho's avatar
Rick Ho committed
345
346
347
        super().__init__(
            module,
            mp_group=mpu.get_model_parallel_group(),
Sengxian's avatar
Sengxian committed
348
            dp_group=mpu.get_data_parallel_group(),
Rick Ho's avatar
Rick Ho committed
349
350
351
        )

    def state_dict(self, *args, **kwargs):
Sengxian's avatar
Sengxian committed
352
        r"""
Rick Ho's avatar
Rick Ho committed
353
        Keep consitency with Megatron
Sengxian's avatar
Sengxian committed
354
        """
Rick Ho's avatar
Rick Ho committed
355
356
357
        return self.module.state_dict(*args, **kwargs)

    def state_dict_for_save_checkpoint(self, *args, **kwargs):
Sengxian's avatar
Sengxian committed
358
        r"""
Rick Ho's avatar
Rick Ho committed
359
        Keep consitency with Megatron
Sengxian's avatar
Sengxian committed
360
        """
Rick Ho's avatar
Rick Ho committed
361
362
363
        return self.module.state_dict_for_save_checkpoint(*args, **kwargs)

    def load_state_dict(self, *args, **kwargs):
Sengxian's avatar
Sengxian committed
364
        r"""
Rick Ho's avatar
Rick Ho committed
365
        Keep consitency with Megatron
Sengxian's avatar
Sengxian committed
366
        """
Rick Ho's avatar
Rick Ho committed
367
        return self.module.load_state_dict(*args, **kwargs)
368

369
370
371
def get_fmoe_checkpoint_name(checkpoints_path, iteration,
                        release=False, data_parallel_rank=-1):
    """A unified checkpoint name, allowing specifying a data parallel rank"""
372
    from megatron import mpu
373
374
375
376
377
    from megatron.checkpointing import get_checkpoint_name
    if data_parallel_rank == -1:
        data_parallel_rank = mpu.get_data_parallel_rank()
    if data_parallel_rank == 0:
        return get_checkpoint_name(checkpoints_path, iteration, release)
378
379
380
381
382
383
384
385
386
387

    if release:
        directory = 'release'
    else:
        directory = 'iter_{:07d}'.format(iteration)
    # Use both the tensor and pipeline MP rank.
    if mpu.get_pipeline_model_parallel_world_size() == 1:
        return os.path.join(checkpoints_path, directory,
                            'mp_rank_{:02d}_dp_rank_{:04d}'.format(
                                mpu.get_tensor_model_parallel_rank(),
388
                                data_parallel_rank
389
390
391
392
393
394
                                ),
                            'model_optim_rng.pt')
    return os.path.join(checkpoints_path, directory,
                        'mp_rank_{:02d}_{:03d}_dp_rank_{:04d}'.format(
                            mpu.get_tensor_model_parallel_rank(),
                            mpu.get_pipeline_model_parallel_rank(),
395
                            data_parallel_rank
396
397
398
                            ),
                        'model_optim_rng.pt')

399
def save_checkpoint(iteration, model, optimizer, lr_scheduler, expert_dp_comm='none'):
400
    """Save a model checkpoint with expert parallel """
Jiezhong Qiu's avatar
Jiezhong Qiu committed
401
    # TODO: update patch
402
403
404
    from megatron import get_args
    from megatron import mpu

405
406
407
408
409
    if mpu.get_data_parallel_rank() == 0:
        # at dp rank 0, we still follows the native load_checkpoint by megatron
        from megatron.checkpointing import save_checkpoint as save_checkpoint_native
        save_checkpoint_native(iteration, model, optimizer, lr_scheduler)
        return
410

411
    args = get_args()
412

413
414
415
416
417
418
419
420
421
422
    # Only rank zero of the data parallel writes to the disk.
    if isinstance(model, DistributedDataParallel):
        model = model.module

    if torch.distributed.get_rank() == 0:
        print('saving checkpoint at iteration {:7d} to {}'.format(
            iteration, args.save), flush=True)

    # Arguments, iteration, and model.
    state_dict = {}
Jiezhong Qiu's avatar
Jiezhong Qiu committed
423
424
    state_dict['model'] = model.state_dict_for_save_checkpoint(
        keep_vars=(mpu.get_data_parallel_rank() > 0))
425

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
    def extract_expert_param(state_dict, expert_dp_comm='none'):
        state_dict_new = state_dict.__class__()
        for k, v in state_dict.items():
            # megatron uses both dict and OrderedDict in its state_dict
            if isinstance(v, (OrderedDict, dict)):
                v_new = extract_expert_param(v, expert_dp_comm)
                if len(v_new) > 0:
                    state_dict_new[k] = v_new
            elif hasattr(v, 'dp_comm') and v.dp_comm == expert_dp_comm:
                state_dict_new[k] = v.detach()
        return state_dict_new

    state_dict['model'] = extract_expert_param(
                state_dict['model'],
                expert_dp_comm)
441
442
443
444
445

    # Optimizer stuff.
    if not args.no_save_optim:
        if optimizer is not None:
            state_dict['optimizer'] = optimizer.state_dict()
446
447
448
449
450
451
452
453
            index = 0
            for param_group in optimizer.optimizer.param_groups:
                for param in param_group['params']:
                    if not (hasattr(param, 'dp_comm') and \
                        param.dp_comm == expert_dp_comm):
                        # this parameter is not an expert parameter
                        # thus there is no need to save its state in current rank
                        # since it has been saved by data parallel rank 0
454
455
456
457
458
                        if args.fp16:
                            # fp16 optimizer may have empty state due to overflow
                            state_dict['optimizer']['optimizer']['state'].pop(index, None)
                        else:
                            state_dict['optimizer']['state'].pop(index)
459
                    index += 1
460
461
462
463
            if args.fp16:
                state_dict['optimizer']['optimizer'].pop('param_groups')
            else:
                state_dict['optimizer'].pop('param_groups')
464
465

    # Save.
466
    checkpoint_name = get_fmoe_checkpoint_name(args.save, iteration)
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    from megatron.checkpointing import ensure_directory_exists
    from megatron.checkpointing import get_checkpoint_tracker_filename
    ensure_directory_exists(checkpoint_name)
    torch.save(state_dict, checkpoint_name)

    # Wait so everyone is done (necessary)
    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print('  successfully saved checkpoint at iteration {:7d} to {}'.format(
            iteration, args.save), flush=True)
    # And update the latest iteration
    if torch.distributed.get_rank() == 0:
        tracker_filename = get_checkpoint_tracker_filename(args.save)
        with open(tracker_filename, 'w') as f:
            f.write(str(iteration))
    # Wait so everyone is done (not necessary)
    torch.distributed.barrier()
484
485


486
def merge_state_dict(state_dict_rank0, state_dict_local, fp16):
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
    """merge two state dicts, one from data parallel rank 0,
    another only contains expert states"""
    from megatron import print_rank_last
    def merge_model(state_dict_rank0, state_dict_local):
        for k, v in state_dict_local.items():
            # megatron uses both dict and OrderedDict in its state_dict
            if isinstance(v, (OrderedDict, dict)):
                print_rank_last("[merge model] go recursively to {}".format(k))
                merge_model(state_dict_rank0[k], v)
            else:
                before = state_dict_rank0[k].sum().item()
                state_dict_rank0[k] = v
                after = state_dict_rank0[k].sum().item()
                print_rank_last("[merge model] copy parameter {}, \
                    before.sum={:7f}, after.sum={:7f}".format(k, before, after))
    merge_model(state_dict_rank0['model'], state_dict_local['model'])

504
505
506
507
    optimizer_rank0 = state_dict_rank0['optimizer']['optimizer'] if fp16 else state_dict_rank0['optimizer']
    optimizer_local = state_dict_local['optimizer']['optimizer'] if fp16 else state_dict_local['optimizer']

    for k, v in optimizer_local['state'].items():
508
        before = {kk: vv.sum().item() \
509
510
            for kk, vv in optimizer_rank0['state'][k].items()}
        optimizer_rank0['state'][k] = v
511
        after = {kk: vv.sum().item() \
512
            for kk, vv in optimizer_rank0['state'][k].items()}
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        print_rank_last("[merge optimizer] copy {}, \
               before.sum={}, after.sum={}".format(k, str(before), str(after)))
    return state_dict_rank0

def load_checkpoint(model, optimizer, lr_scheduler, load_arg='load'):
    """Load a model checkpoint and return the iteration."""

    from megatron import get_args
    from megatron import mpu
    from megatron import print_rank_last
    from megatron.checkpointing import get_checkpoint_tracker_filename, set_checkpoint_version, check_checkpoint_args, update_num_microbatches
    if mpu.get_data_parallel_rank() == 0:
        # at dp rank 0, we still follow the native load_checkpoint by megatron
        from megatron.checkpointing import load_checkpoint as load_checkpoint_native
        return load_checkpoint_native(model, optimizer, lr_scheduler, load_arg)

    args = get_args()
    load_dir = getattr(args, load_arg)

    if isinstance(model, DistributedDataParallel):
        model = model.module
    # Read the tracker file and set the iteration.
    tracker_filename = get_checkpoint_tracker_filename(load_dir)

    # If no tracker file, return iretation zero.
    if not os.path.isfile(tracker_filename):
        print_rank_last('WARNING: could not find the metadata file {} '.format(
            tracker_filename))
        print_rank_last('    will not load any checkpoints and will start from '
                     'random')
        return 0

    # Otherwise, read the tracker file and either set the iteration or
    # mark it as a release checkpoint.
    iteration = 0
    release = False
    with open(tracker_filename, 'r') as f:
        metastring = f.read().strip()
        try:
            iteration = int(metastring)
        except ValueError:
            release = metastring == 'release'
            if not release:
                print_rank_last('ERROR: Invalid metadata file {}. Exiting'.format(
                    tracker_filename))
                sys.exit()

    assert iteration > 0 or release, 'error parsing metadata file {}'.format(
        tracker_filename)

    # Checkpoint.
    checkpoint_name_rank0 = get_fmoe_checkpoint_name(
        load_dir, iteration, release, 0)
    checkpoint_name_local = get_fmoe_checkpoint_name(
        load_dir, iteration, release, mpu.get_data_parallel_rank())
    print_rank_last(' loading checkpoint at rank 0 from {} and rank {} from {} at iteration {}, will merge them later'.format(
        checkpoint_name_rank0, mpu.get_data_parallel_rank(),
        checkpoint_name_local, iteration))

    # Load the checkpoint.
    def load_state_dict(checkpoint_name):
        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except ModuleNotFoundError:
            from megatron.fp16_deprecated import loss_scaler
            # For backward compatibility.
            print_rank_last(' > deserializing using the old code structure ...')
            sys.modules['fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            sys.modules['megatron.fp16.loss_scaler'] = sys.modules[
                'megatron.fp16_deprecated.loss_scaler']
            state_dict = torch.load(checkpoint_name, map_location='cpu')
            sys.modules.pop('fp16.loss_scaler', None)
            sys.modules.pop('megatron.fp16.loss_scaler', None)
        except BaseException:
            print_rank_last('could not load the checkpoint')
            sys.exit()
        return state_dict
    state_dict_rank0 = load_state_dict(checkpoint_name_rank0)
    state_dict_local = load_state_dict(checkpoint_name_local)

594
    state_dict = merge_state_dict(state_dict_rank0, state_dict_local, args.fp16)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

    # set checkpoint version
    set_checkpoint_version(state_dict.get('checkpoint_version', 0))

    # Set iteration.
    if args.finetune or release:
        iteration = 0
    else:
        try:
            iteration = state_dict['iteration']
        except KeyError:
            try:  # Backward compatible with older checkpoints
                iteration = state_dict['total_iters']
            except KeyError:
                print_rank_last('A metadata file exists but unable to load '
                             'iteration from checkpoint {}, exiting'.format(
                                 checkpoint_name_local))
                sys.exit()

    # Check arguments.
    assert args.consumed_train_samples == 0
    assert args.consumed_valid_samples == 0
    if 'args' in state_dict:
        checkpoint_args = state_dict['args']
        check_checkpoint_args(checkpoint_args)
        args.consumed_train_samples = getattr(checkpoint_args,
                                              'consumed_train_samples', 0)
        update_num_microbatches(consumed_samples=args.consumed_train_samples)
        args.consumed_valid_samples = getattr(checkpoint_args,
                                              'consumed_valid_samples', 0)
    else:
        print_rank_last('could not find arguments in the checkpoint ...')

    # Model.
    model.load_state_dict(state_dict['model'])

    # Optimizer.
    if not release and not args.finetune and not args.no_load_optim:
        try:
            if optimizer is not None:
                optimizer.load_state_dict(state_dict['optimizer'])
            if lr_scheduler is not None:
                lr_scheduler.load_state_dict(state_dict['lr_scheduler'])
        except KeyError:
            print_rank_last('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-optim or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name_local))
            sys.exit()

    # rng states.
    if not release and not args.finetune and not args.no_load_rng:
        try:
            random.setstate(state_dict['random_rng_state'])
            np.random.set_state(state_dict['np_rng_state'])
            torch.set_rng_state(state_dict['torch_rng_state'])
            torch.cuda.set_rng_state(state_dict['cuda_rng_state'])
            mpu.get_cuda_rng_tracker().set_states(
                state_dict['rng_tracker_states'])
        except KeyError:
            print_rank_last('Unable to load optimizer from checkpoint {}. '
                         'Specify --no-load-rng or --finetune to prevent '
                         'attempting to load the optimizer state, '
                         'exiting ...'.format(checkpoint_name_local))
            sys.exit()

    torch.distributed.barrier()
    print_rank_last('  successfully loaded checkpoint (with expert parametes updated) from {} at iteration {}'.format(
        args.load, iteration))

    return iteration