test_local_exchange.py 1.3 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
import sys
from collections import OrderedDict
from typing import List, Type, Union

import pytest
import torch
import torch.nn as nn
import numpy as np

from copy import deepcopy
from fmoe.functions import MOEGather, MOEScatter, count_by_gate

13
from test_numerical import _assert_numerical
Rick Ho's avatar
Rick Ho committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

@pytest.mark.parametrize("n_expert", [1, 4, 8])
@pytest.mark.parametrize("topk", [1, 2])
@pytest.mark.parametrize("batch_size", [12])
@pytest.mark.parametrize("d_model", [6])
@pytest.mark.parametrize("world_size", [1])
def test_scatter(n_expert, topk, batch_size, d_model, world_size):
    gate_idx = torch.randint(n_expert + 1, (batch_size, topk)) - 1
    gate_idx = gate_idx.long().cuda()
    pos, lec, gec = count_by_gate(gate_idx, n_expert, world_size)
    fbs = int(gec.sum().item())
    inp = torch.rand(batch_size, d_model).cuda()
    inp.requires_grad = True
    out = MOEScatter.apply(inp, pos % batch_size, lec, gec, fbs, world_size)
    out.sum().backward()

    inp_raw = inp.data.clone()
    out_raw = torch.empty(pos.shape[0], d_model,
            device=inp.device, dtype=inp.dtype)
33
    # out_raw.sum().backward()
Rick Ho's avatar
Rick Ho committed
34
35
    for i, f in enumerate(pos.cpu()):
        out_raw[i] = inp[f % batch_size]
36
    _assert_numerical(['out'], [out], [out_raw], 0)
Rick Ho's avatar
Rick Ho committed
37
38
39
40
    # TODO: check grad

if __name__ == '__main__':
    test_scatter(4, 2, 8, 6, 1)