proj_adaptive_softmax.py 5.81 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
10
11
from collections import defaultdict

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

CUDA_MAJOR = int(torch.version.cuda.split('.')[0])
CUDA_MINOR = int(torch.version.cuda.split('.')[1])

12
13
14
15
class Projection(nn.Module):
    def __init__(self, out_feat, in_feat):
        self.weight = nn.Parameter(torch.Tensor(out_feat, in_feat))

Zhilin Yang's avatar
init  
Zhilin Yang committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ProjectedAdaptiveLogSoftmax(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
                 keep_order=False):
        super(ProjectedAdaptiveLogSoftmax, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed
        self.d_proj = d_proj

        self.cutoffs = cutoffs + [n_token]
        self.cutoff_ends = [0] + self.cutoffs
        self.div_val = div_val

        self.shortlist_size = self.cutoffs[0]
        self.n_clusters = len(self.cutoffs) - 1
        self.head_size = self.shortlist_size + self.n_clusters

        if self.n_clusters > 0:
            self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed))
            self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters))

        self.out_layers = nn.ModuleList()
38
        self.out_projs = nn.ModuleList()
Zhilin Yang's avatar
init  
Zhilin Yang committed
39
40
41
42
43

        if div_val == 1:
            for i in range(len(self.cutoffs)):
                if d_proj != d_embed:
                    self.out_projs.append(
44
                        Projection(d_proj, d_embed)
Zhilin Yang's avatar
init  
Zhilin Yang committed
45
46
47
48
49
50
51
52
53
54
55
                    )
                else:
                    self.out_projs.append(None)

            self.out_layers.append(nn.Linear(d_embed, n_token))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)

                self.out_projs.append(
56
                    Projection(d_proj, d_emb_i)
Zhilin Yang's avatar
init  
Zhilin Yang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
                )

                self.out_layers.append(nn.Linear(d_emb_i, r_idx-l_idx))

        self.keep_order = keep_order

    def _compute_logit(self, hidden, weight, bias, proj):
        if proj is None:
            logit = F.linear(hidden, weight, bias=bias)
        else:
            # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
            proj_hid = F.linear(hidden, proj.t().contiguous())
            logit = F.linear(proj_hid, weight, bias=bias)
            # else:
            #     logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
            #     if bias is not None:
            #         logit = logit + bias

        return logit

    def forward(self, hidden, target, keep_order=False):
        '''
            hidden :: [len*bsz x d_proj]
            target :: [len*bsz]
        '''

        if hidden.size(0) != target.size(0):
            raise RuntimeError('Input and target should have the same size '
                               'in the batch dimension.')

        if self.n_clusters == 0:
            logit = self._compute_logit(hidden, self.out_layers[0].weight,
89
                                        self.out_layers[0].bias, self.out_projs[0].weight if self.out_projs[0] is not None else None)
Zhilin Yang's avatar
init  
Zhilin Yang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            nll = -F.log_softmax(logit, dim=-1) \
                    .gather(1, target.unsqueeze(1)).squeeze(1)
        else:
            # construct weights and biases
            weights, biases = [], []
            for i in range(len(self.cutoffs)):
                if self.div_val == 1:
                    l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
                    weight_i = self.out_layers[0].weight[l_idx:r_idx]
                    bias_i = self.out_layers[0].bias[l_idx:r_idx]
                else:
                    weight_i = self.out_layers[i].weight
                    bias_i = self.out_layers[i].bias

                if i == 0:
                    weight_i = torch.cat(
                        [weight_i, self.cluster_weight], dim=0)
                    bias_i = torch.cat(
                        [bias_i, self.cluster_bias], dim=0)

                weights.append(weight_i)
                biases.append(bias_i)

Zilin Zhu's avatar
Zilin Zhu committed
113
            head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0].weight if self.out_projs[0] is not None else None
Zhilin Yang's avatar
init  
Zhilin Yang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

            head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
            head_logprob = F.log_softmax(head_logit, dim=1)

            nll = torch.zeros_like(target,
                    dtype=hidden.dtype, device=hidden.device)

            offset = 0
            cutoff_values = [0] + self.cutoffs
            for i in range(len(cutoff_values) - 1):
                l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1]

                mask_i = (target >= l_idx) & (target < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                target_i = target.index_select(0, indices_i) - l_idx
                head_logprob_i = head_logprob.index_select(0, indices_i)

                if i == 0:
                    logprob_i = head_logprob_i.gather(1, target_i[:,None]).squeeze(1)
                else:
Zilin Zhu's avatar
Zilin Zhu committed
138
                    weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i].weight if self.out_projs[i] is not None else None
Zhilin Yang's avatar
init  
Zhilin Yang committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

                    hidden_i = hidden.index_select(0, indices_i)

                    tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i)
                    tail_logprob_i = F.log_softmax(tail_logit_i, dim=1)

                    logprob_i = head_logprob_i[:, -i] \
                              + tail_logprob_i.gather(1, target_i[:,None]).squeeze(1)

                if (hasattr(self, 'keep_order') and self.keep_order) or keep_order:
                    nll.index_copy_(0, indices_i, -logprob_i)
                else:
                    nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i)

                offset += logprob_i.size(0)

        return nll