schedule.py 4.59 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
r"""
The smart schedule proposed in FasterMoE.
"""
import torch
from torch.autograd.function import Function

from fmoe.functions import prepare_forward, ensure_comm
from fmoe.functions import _local_scatter, _local_gather 
import fmoe_cuda as fmoe_native
Rick Ho's avatar
Rick Ho committed
10
from fmoe.fastermoe import expert_utils
Rick Ho's avatar
Rick Ho committed
11
12
13
14
15
16
17


class MoEForward(Function):
    @staticmethod
    def forward(
            ctx,
            expert_fn,
Rick Ho's avatar
Rick Ho committed
18
            experts,
Rick Ho's avatar
Rick Ho committed
19
20
21
22
23
24
25
26
27
28
29
            inp, # models,
            pos_s, pos_g,
            local_expert_count, global_expert_count,
            stored_models,
            fwd_batch_size, out_batch_size,
            world_size):
        local_input_buf = _local_scatter(inp, pos_s)

        # TODO: leave this for furture work of expert shadowing
        # model_params = [[tuple(m.parameters()) for m in node] for node in models]

Rick Ho's avatar
Rick Ho committed
30
31
        ctx.gibs = [None] * (world_size * 2)
        ctx.gobs = [None] * (world_size * 2)
Rick Ho's avatar
Rick Ho committed
32
33
        def _expert_forward(x, y, idx):
            x = x.data
Rick Ho's avatar
Rick Ho committed
34
35
36
            with torch.enable_grad():
                x.requires_grad = True
                y0 = expert_fn(x, [x.shape[0]])
Rick Ho's avatar
Rick Ho committed
37
38
39
40
            ctx.gibs[idx] = x
            ctx.gobs[idx] = y0
            y.copy_(y0)

Rick Ho's avatar
Rick Ho committed
41
42
43
44
45
46
47
48
49
        ctx.experts = experts
        if stored_models.any():
            ctx.expert_size = expert_utils.get_expert_param_size(experts)
        else:
            ctx.expert_size = 0
        get_param_fn = lambda out: expert_utils.get_expert_params(experts, out)
        pop_fn = lambda: expert_utils.pop_expert_params(experts)
        ctx.shadows = [None] * world_size
        def stash_fn(params, idx):
Rick Ho's avatar
Rick Ho committed
50
            expert_utils.stash_expert_params(experts, params)
Rick Ho's avatar
Rick Ho committed
51
52
            ctx.shadows[idx] = params

Rick Ho's avatar
Rick Ho committed
53
        local_output_buf, gib = fmoe_native.smart_sch_forward(
Rick Ho's avatar
Rick Ho committed
54
55
                local_input_buf,
                local_expert_count, global_expert_count, 
Rick Ho's avatar
Rick Ho committed
56
57
                stored_models, fwd_batch_size, ctx.expert_size,
                world_size, _expert_forward, get_param_fn, stash_fn, pop_fn)
Rick Ho's avatar
Rick Ho committed
58
59
60
61
62

        out = _local_gather(local_output_buf, pos_g, out_batch_size,
                maybe_overlap=False)
        
        variables = (pos_s, pos_g, local_expert_count, global_expert_count,
Rick Ho's avatar
Rick Ho committed
63
                stored_models, gib)
Rick Ho's avatar
Rick Ho committed
64
65
66
67
68
69
70
71
72
        
        ctx.moe_args = fwd_batch_size, inp.shape[0], world_size
        ctx.save_for_backward(*variables)

        return out

    @staticmethod
    def backward(ctx, grad_out):
        (pos_s, pos_g, local_expert_count, global_expert_count,
Rick Ho's avatar
Rick Ho committed
73
                stored_models, _) = ctx.saved_tensors
Rick Ho's avatar
Rick Ho committed
74
75
        (fwd_batch_size, inp_batch_size, world_size) = ctx.moe_args

Rick Ho's avatar
Rick Ho committed
76
        def _expert_backward(grad_y, grad_x, idx):
Rick Ho's avatar
Rick Ho committed
77
            y = ctx.gobs[idx]
Rick Ho's avatar
Rick Ho committed
78
            torch.autograd.backward([y], [grad_y])
Rick Ho's avatar
Rick Ho committed
79
            x = ctx.gibs[idx]
Rick Ho's avatar
Rick Ho committed
80
            grad_x.copy_(x.grad)
Rick Ho's avatar
Rick Ho committed
81

Rick Ho's avatar
Rick Ho committed
82
83
84
85
86
87
88
        experts = ctx.experts
        def stash_fn(idx):
            expert_utils.stash_expert_params(experts, ctx.shadows[idx])
        pop_fn = lambda: expert_utils.pop_expert_params(experts)
        collect_fn = lambda g: expert_utils.collect_expert_grads(experts, g)
        set_grad_fn = lambda g: expert_utils.set_grads(experts, g)

Rick Ho's avatar
Rick Ho committed
89
90
        grad_out_buf = _local_scatter(grad_out.contiguous(), pos_g)
        grad_in_buf = fmoe_native.smart_sch_backward(
Rick Ho's avatar
Rick Ho committed
91
                grad_out_buf,
Rick Ho's avatar
Rick Ho committed
92
93
                local_expert_count, global_expert_count,
                stored_models,
Rick Ho's avatar
Rick Ho committed
94
95
96
                pos_s.shape[0], fwd_batch_size, ctx.expert_size,
                world_size, _expert_backward,
                stash_fn, pop_fn, collect_fn, set_grad_fn)
Rick Ho's avatar
Rick Ho committed
97
98
        grad_in = _local_gather(grad_in_buf, pos_s, inp_batch_size)

Rick Ho's avatar
Rick Ho committed
99
        return (None, None, grad_in, None, None, None, None, None, None, None, None)
Rick Ho's avatar
Rick Ho committed
100
101


Rick Ho's avatar
Rick Ho committed
102
def _fmoe_general_global_forward(inp, gate, expert_fn, n_expert, world_size, experts=None, stored_models=None):
Rick Ho's avatar
Rick Ho committed
103
104
105
106
107
108
109
110
111
112
113
114
115
    # TODO: Using multiple tensors as input is to be supported.
    assert(isinstance(inp, torch.Tensor))
    # TODO: Support many experts on each process
    assert(n_expert == 1)
    (
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
        fwd_batch_size,
    ) = prepare_forward(gate, n_expert, world_size)

    # TODO: Expert shadowing is to be supported. Currently using all 0s
Rick Ho's avatar
Rick Ho committed
116
117
    if stored_models is None:
        stored_models = torch.zeros(n_expert * world_size, dtype=torch.bool)
Rick Ho's avatar
Rick Ho committed
118
119
120
121
122
123

    topk = 1
    if len(gate.shape) == 2:
        topk = gate.shape[1]
    out_batch_size = inp.shape[0] * topk

Rick Ho's avatar
Rick Ho committed
124
    return MoEForward.apply(expert_fn, experts, inp,
Rick Ho's avatar
Rick Ho committed
125
126
127
            torch.div(pos, topk, rounding_mode='floor'), pos,
            local_expert_count, global_expert_count, stored_models,
            fwd_batch_size, out_batch_size, world_size)