global_exchange.cpp 5.31 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// !!! This is a file automatically generated by hipify!!!
#include <ATen/dtk_macros.h>
#include "../hip/global_exchange.h"
#include "../hip/utils/fmoe_utils.h"
#include <torch/extension.h>

#ifdef FMOE_USE_NCCL
#include <rccl/rccl.h>


void fmoe_cuda_expert_exchange_impl(
        const long* local_expert_count,
        long* global_expert_count,
        int n_expert, int world_size,
        CudaStreamManager* smgr) {
    NCCL_SAFE_CALL(ncclGroupStart());
    for (int i = 0; i < world_size; ++i) {
        NCCL_SAFE_CALL(ncclSend(
                local_expert_count + n_expert * i,
                n_expert,
                ncclInt64,
                i,
                smgr->ncclcomm,
                smgr->torchStream()));
        NCCL_SAFE_CALL(ncclRecv(
                global_expert_count + n_expert * i,
                n_expert,
                ncclInt64,
                i,
                smgr->ncclcomm,
                smgr->torchStream()));
    }
    NCCL_SAFE_CALL(ncclGroupEnd());
}

torch::Tensor _expert_exchange(
        torch::Tensor local_expert_count,
        long n_expert, long n_workers) {
    auto global_expert_count = torch::empty_like(local_expert_count);
    auto smgr = getCudaStreamManager(local_expert_count.device().index());

    fmoe_cuda_expert_exchange_impl(
            local_expert_count.data_ptr<long>(),
            global_expert_count.data_ptr<long>(),
            n_expert, n_workers,
            smgr);
    return global_expert_count;
}

torch::Tensor _global_scatter(
        torch::Tensor input_buf,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        long batch_size, long n_workers) {
    CHECK_INPUT(input_buf);

    auto n_expert = local_expert_count.size(0) / n_workers;
    auto in_feat = input_buf.size(1);
    auto global_input_buf = input_buf.new_empty({batch_size, in_feat});
    auto smgr = getCudaStreamManager(input_buf.device().index());

    AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16,
            input_buf.scalar_type(), "fmoe_cuda_global_scatter", ([&] {
        fmoe_cuda_global_scatter_impl<scalar_t>(
            input_buf.data_ptr<scalar_t>(),
            local_expert_count.data_ptr<long>(),
            global_expert_count.data_ptr<long>(),
            global_input_buf.data_ptr<scalar_t>(),
            in_feat, n_expert, n_workers,
            smgr
        );
    }));
    return global_input_buf;
}

torch::Tensor _global_gather(
        torch::Tensor output_buf,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        long batch_size, long n_workers) {
    CHECK_INPUT(output_buf);

    auto n_expert = local_expert_count.size(0) / n_workers;
    auto out_feat = output_buf.size(1);
    auto local_output_buf = output_buf.new_empty({batch_size, out_feat});
    auto smgr = getCudaStreamManager(output_buf.device().index());

    AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16,
            output_buf.scalar_type(), "fmoe_cuda_global_gather", ([&] {
        fmoe_cuda_global_gather_impl<scalar_t>(
            output_buf.data_ptr<scalar_t>(),
            local_expert_count.data_ptr<long>(),
            global_expert_count.data_ptr<long>(),
            local_output_buf.data_ptr<scalar_t>(),
            out_feat, n_expert, n_workers,
            smgr
        );
    }));
    return local_output_buf;
}

#if defined(TORCH_VERSION_MAJOR) && (TORCH_VERSION_MAJOR > 1 || \
        (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR >= 13))
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp>
#else
#include <c10d/ProcessGroupNCCL.hpp>
#endif

class HackNCCLGroup: public c10d::ProcessGroupNCCL {
public:
    ncclComm_t getcomm(at::Device dev) {
        ncclUniqueId ncclID;
        int rank = getRank();
        if (rank == 0) {
            ncclGetUniqueId(&ncclID);
        }
#if defined(TORCH_VERSION_MAJOR) && (TORCH_VERSION_MAJOR > 1 || \
        (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR >= 12))
        broadcastUniqueNCCLID(&ncclID,
                false,
                "fastmoe_nccl_comm",
                rank);
#elif defined(TORCH_VERSION_MAJOR) && (TORCH_VERSION_MAJOR > 1 || \
        (TORCH_VERSION_MAJOR == 1 && TORCH_VERSION_MINOR >= 8))
        broadcastUniqueNCCLID(&ncclID,
                c10d::OpType::SEND,
                "fastmoe_nccl_comm",
                rank);
#else
        broadcastUniqueNCCLID(&ncclID);
#endif
        ncclComm_t comm;
        NCCL_SAFE_CALL(ncclCommInitRank(&comm, getSize(), ncclID, rank));
        return comm;
    }
};

#if defined(TORCH_VERSION_MAJOR) && (TORCH_VERSION_MAJOR >= 2)
void _ensure_nccl(c10d::ProcessGroup& p, torch::Tensor t) {
#else
void _ensure_nccl(c10d::ProcessGroupNCCL& p, torch::Tensor t) {
#endif  // TORCH_VERSION
    auto smgr = getCudaStreamManager(t.device().index());
    if (smgr->ncclgood) {
        return;
    }
#if defined(TORCH_VERSION_MAJOR) && (TORCH_VERSION_MAJOR >= 2)
    HackNCCLGroup* h = (HackNCCLGroup*)(void*)
        (p.getBackend(c10d::ProcessGroup::NCCL).get());
#else
    HackNCCLGroup* h = (HackNCCLGroup*)(void*)&p;
#endif  // TORCH_VERSION
    smgr->ncclcomm = h->getcomm(t.device());
    if (smgr->ncclcomm != 0) {
        smgr->ncclgood = 1;
    } else {
        std::cerr << "Nccl initialization failed\n";
    }
}

#endif  // FMOE_USE_NCCL