train.py 16.2 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
10
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import time

from absl import flags
import absl.logging as _logging  # pylint: disable=unused-import

11
12
from six.moves import xrange  # pylint: disable=redefined-builtin

Zhilin Yang's avatar
init  
Zhilin Yang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import tensorflow as tf
from tensorflow.gfile import Exists as exists
import model
import data_utils
import tpu_estimator

import numpy as np
from time import sleep


# TPU parameters
flags.DEFINE_string("master", default=None,
                    help="master")
flags.DEFINE_string("tpu", default=None,
      help="The Cloud TPU to use for training. This should be either the name "
      "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 url.")
flags.DEFINE_string("gcp_project", default=None,
      help="Project name for the Cloud TPU-enabled project. If not specified, "
      "we will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_string("tpu_zone",default=None,
      help="GCE zone where the Cloud TPU is located in. If not specified, we "
      "will attempt to automatically detect the GCE project from metadata.")
flags.DEFINE_bool("use_tpu", default=True,
      help="Use TPUs rather than plain CPUs.")
flags.DEFINE_integer("num_hosts", default=1,
      help="number of TPU hosts")
flags.DEFINE_integer("num_core_per_host", default=8,
      help="number of cores per host")

# Experiment (data/checkpoint/directory) parameters
flags.DEFINE_string("data_dir", default="",
      help="Path to tf-records directory.")
flags.DEFINE_string("record_info_dir", default="",
      help="Path to local directory containing filenames.txt.")
flags.DEFINE_string("corpus_info_path", default="",
      help="Path to corpus-info.json file.")
flags.DEFINE_string("model_dir", default=None,
      help="Estimator model_dir.")
flags.DEFINE_bool("do_eval", default=False,
      help="Whether to run eval on the dev set.")
flags.DEFINE_bool("track_mean", default=True,
      help="Trace mean loss during training.")
flags.DEFINE_string("eval_ckpt_path", None,
      help="Checkpoint path for evaluation."
           "If set, model_dir will be ignored."
           "If unset, will use the latest ckpt in model_dir.")
flags.DEFINE_string("warm_start_path", None,
      help="Checkpoint path for warm start."
           "If set, will clear Adam states."
           "Note that the new model_dir should be different"
           " from warm_start_path.")

# Optimization paramenters
flags.DEFINE_float("learning_rate", default=2.5e-4,
      help="Maximum learning rate.")
flags.DEFINE_float("clip", default=0.25,
      help="Gradient clipping value.")
# for cosine decay
flags.DEFINE_float("min_lr_ratio", default=0.01,
      help="Minimum ratio learning rate.")
flags.DEFINE_integer("warmup_steps", default=0,
      help="Number of steps for linear lr warmup.")

# Training parameters
flags.DEFINE_integer("train_batch_size", default=60,
      help="Size of train batch.")
flags.DEFINE_integer("eval_batch_size", default=60,
      help="Size of valid batch.")
flags.DEFINE_integer("train_steps", default=100000,
      help="Total number of training steps.")
flags.DEFINE_integer("iterations", default=500,
      help="Number of iterations per repeat loop.")
flags.DEFINE_integer("save_steps", default=10000,
      help="number of steps for model checkpointing.")

# Evaluation parameters
flags.DEFINE_integer("max_eval_batch", default=-1,
      help="Set -1 to turn off. Only used in test mode.")
flags.DEFINE_bool("do_eval_only", default=False,
      help="Run evaluation only.")
flags.DEFINE_integer("start_eval_steps", default=10000,
      help="Which checkpoint to start with in `do_eval_only` mode.")
flags.DEFINE_string("eval_split", "valid",
      help="Which data split to evaluate.")

# Model paramenters
flags.DEFINE_integer("tgt_len", default=70,
      help="Number of steps to predict")
flags.DEFINE_integer("mem_len", default=70,
      help="Number of steps to cache")
flags.DEFINE_bool("same_length", default=False,
      help="Same length attention")
flags.DEFINE_integer("clamp_len", default=-1,
      help="Clamp length")

flags.DEFINE_integer("n_layer", default=6,
      help="Number of layers.")
flags.DEFINE_integer("d_model", default=500,
      help="Dimension of the model.")
flags.DEFINE_integer("d_embed", default=500,
      help="Dimension of the embeddings.")
flags.DEFINE_integer("n_head", default=10,
      help="Number of attention heads.")
flags.DEFINE_integer("d_head", default=50,
      help="Dimension of each attention head.")
flags.DEFINE_integer("d_inner", default=1000,
      help="Dimension of inner hidden size in positionwise feed-forward.")
flags.DEFINE_float("dropout", default=0.1,
      help="Dropout rate.")
flags.DEFINE_float("dropatt", default=0.1,
      help="Attention dropout rate.")
flags.DEFINE_bool("untie_r", default=False,
      help="untie r_w_bias and r_r_bias")

# Adaptive Softmax / Embedding
flags.DEFINE_bool("tie_weight", default=True,
      help="Tie embedding and softmax weight.")
flags.DEFINE_integer("div_val", default=1,
      help="Divide the embedding size by this val for each bin")
flags.DEFINE_bool("proj_share_all_but_first", default=False,
      help="True to share all but first projs, False not to share.")
flags.DEFINE_bool("proj_same_dim", default=True,
      help="Project the bin with the same dimension.")

# Parameter initialization
flags.DEFINE_enum("init", default="normal",
      enum_values=["normal", "uniform"],
      help="Initialization method.")
flags.DEFINE_float("init_std", default=0.02,
      help="Initialization std when init is normal.")
flags.DEFINE_float("proj_init_std", default=0.01,
      help="Initialization std for embedding projection.")
flags.DEFINE_float("init_range", default=0.1,
      help="Initialization std when init is uniform.")


FLAGS = flags.FLAGS

def metric_fn(loss):
  """Evaluation metric Fn which runs on CPU."""
  perplexity = tf.exp(tf.reduce_mean(loss))
  bpc = tf.reduce_mean(loss) / tf.constant(math.log(2))
  return {
      "perplexity": tf.metrics.mean(perplexity),
      "bpc": tf.metrics.mean(bpc),
  }


def get_model_fn(n_token, cutoffs, train_bin_sizes, eval_bin_sizes):
  def model_fn(features, labels, mode, params):
    is_training = (mode == tf.estimator.ModeKeys.TRAIN)


    batch_size = params["batch_size"]

    mems = params["cache"]
    inp = tf.transpose(features["inputs"], [1, 0])
    tgt = tf.transpose(features["labels"], [1, 0])

    bin_sizes = train_bin_sizes if is_training else eval_bin_sizes
    if bin_sizes:
      inp_perms = [tf.transpose(features["inp_mask"], [1, 0])]
      tgt_perms = [tf.transpose(features["tgt_mask"], [1, 0])]

      head_tgt = tf.transpose(features["head_labels"], [1, 0])

      for b in range(len(bin_sizes)):
        inp_perm = tf.transpose(features["inp_perm_{}".format(b)], [1, 0, 2])
        tgt_perm = tf.transpose(features["tgt_perm_{}".format(b)], [1, 0, 2])

        inp_perms.append(inp_perm)
        tgt_perms.append(tgt_perm)
    else:
      inp_perms, tgt_perms, head_tgt = None, None, None

    if FLAGS.init == "uniform":
      initializer = tf.initializers.random_uniform(
          minval=-FLAGS.init_range,
          maxval=FLAGS.init_range,
          seed=None)
    elif FLAGS.init == "normal":
      initializer = tf.initializers.random_normal(
          stddev=FLAGS.init_std,
          seed=None)
      proj_initializer = tf.initializers.random_normal(
          stddev=FLAGS.proj_init_std,
          seed=None)

    tie_projs = [False for _ in range(len(cutoffs) + 1)]
    if FLAGS.proj_share_all_but_first:
      for i in range(1, len(tie_projs)):
        tie_projs[i] = True

    tf.logging.info("Vocab size : {}".format(n_token))
    tf.logging.info("Batch size : {}".format(batch_size))

    loss, new_mems = model.transformer(
        dec_inp=inp,
        target=tgt,
        mems=mems,
        n_token=n_token,
        n_layer=FLAGS.n_layer,
        d_model=FLAGS.d_model,
        d_embed=FLAGS.d_embed,
        n_head=FLAGS.n_head,
        d_head=FLAGS.d_head,
        d_inner=FLAGS.d_inner,
        dropout=FLAGS.dropout,
        dropatt=FLAGS.dropatt,
        initializer=initializer,
        is_training=is_training,
        mem_len=FLAGS.mem_len,
        cutoffs=cutoffs,
        div_val=FLAGS.div_val,
        tie_projs=tie_projs,
        input_perms=inp_perms,
        target_perms=tgt_perms,
        head_target=head_tgt,
        same_length=FLAGS.same_length,
        clamp_len=FLAGS.clamp_len,
        use_tpu=FLAGS.use_tpu,
        untie_r=FLAGS.untie_r,
        proj_same_dim=FLAGS.proj_same_dim)

    total_loss = tf.reduce_mean(loss)

    if mode == tf.estimator.ModeKeys.EVAL:
      if FLAGS.use_tpu:
        with tf.colocate_with(total_loss):
          total_loss = tf.contrib.tpu.cross_replica_sum(total_loss) \
                     / FLAGS.num_hosts / FLAGS.num_core_per_host
      metric_loss = tf.tile(tf.reshape(total_loss, [1, 1]), [batch_size, 1])
      eval_spec = tf.contrib.tpu.TPUEstimatorSpec(
          mode=mode,
          loss=total_loss,
          eval_metrics=(metric_fn, [metric_loss]))

      eval_spec.cache = new_mems

      return eval_spec

    # Configuring the optimization step.
    global_step = tf.train.get_global_step()

    # increase the learning rate linearly
    if FLAGS.warmup_steps > 0:
      warmup_lr = tf.to_float(global_step) / tf.to_float(FLAGS.warmup_steps) \
                  * FLAGS.learning_rate
    else:
      warmup_lr = 0.0

    # number of parameters
    num_params = np.sum([np.prod(v.shape) for v in tf.trainable_variables()])
    tf.logging.info("#params: {}".format(num_params))

    # format_str = '{{:<{0}s}}\t{{}}'.format(
    #     max([len(v.name) for v in tf.trainable_variables()]))
    # for v in tf.trainable_variables():
    #   tf.logging.info(format_str.format(v.name, v.get_shape()))


    # decay the learning rate using the cosine schedule
    decay_lr = tf.train.cosine_decay(
        FLAGS.learning_rate,
        global_step=global_step-FLAGS.warmup_steps,
        decay_steps=FLAGS.train_steps-FLAGS.warmup_steps,
        alpha=FLAGS.min_lr_ratio)

    learning_rate = tf.where(global_step < FLAGS.warmup_steps,
                             warmup_lr, decay_lr)

    if FLAGS.use_tpu:
      optimizer = tf.contrib.tpu.CrossShardOptimizer(
          tf.train.AdamOptimizer(learning_rate=learning_rate))
      #GradientDescentOptimizer
    else:
      optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

    grads_and_vars = optimizer.compute_gradients(total_loss)
    gradients, variables = zip(*grads_and_vars)
    clipped, _ = tf.clip_by_global_norm(gradients, FLAGS.clip)
    train_op = optimizer.apply_gradients(
        zip(clipped, variables), global_step=tf.train.get_global_step())

    # Constucting TPUEstimatorSpec with cache.
    train_spec = tf.contrib.tpu.TPUEstimatorSpec(
        mode=mode, loss=total_loss, train_op=train_op)

    if FLAGS.mem_len < FLAGS.tgt_len:
      new_mems = [new_mems[: FLAGS.mem_len] for mem_t in new_mems]
    train_spec.cache = new_mems

    return train_spec

  return model_fn


def get_cache_fn(mem_len):

  def cache_fn(batch_size):
    mems = []
    for l in xrange(FLAGS.n_layer):
      if mem_len > 0:
        mems.append(
          tf.zeros([mem_len, batch_size, FLAGS.d_model], dtype=tf.float32))
      else:
        mems.append(tf.zeros([mem_len], dtype=tf.float32))

    return mems

  return cache_fn


def main(unused_argv):
  del unused_argv  # Unused

  tf.logging.set_verbosity(tf.logging.INFO)

  # Get corpus info
  corpus_info = data_utils.get_corpus_info(FLAGS.corpus_info_path)
  n_token = corpus_info["vocab_size"]
  cutoffs = corpus_info["cutoffs"][1:-1]

  if FLAGS.save_steps == 0:
    FLAGS.save_steps = None

  if not FLAGS.do_eval_only:
    # Get train input function
    train_input_fn, train_record_info = data_utils.get_input_fn(
        record_info_dir=FLAGS.record_info_dir,
        split="train",
        per_host_bsz=FLAGS.train_batch_size // FLAGS.num_hosts,
        tgt_len=FLAGS.tgt_len,
        num_core_per_host=FLAGS.num_core_per_host,
        num_hosts=FLAGS.num_hosts,
        use_tpu=FLAGS.use_tpu)
    train_bin_sizes = train_record_info["bin_sizes"]
    num_train_batch = train_record_info["num_batch"]

    # Get train cache function
    train_cache_fn = get_cache_fn(FLAGS.mem_len)
  else:
    train_bin_sizes = []
    num_train_batch = None
    train_cache_fn = None

  if FLAGS.do_eval or FLAGS.do_eval_only:
    assert FLAGS.num_hosts == 1
    # Get eval input function
    eval_input_fn, eval_record_info = data_utils.get_input_fn(
        record_info_dir=FLAGS.record_info_dir,
        split=FLAGS.eval_split,
        per_host_bsz=FLAGS.eval_batch_size // FLAGS.num_hosts,
        tgt_len=FLAGS.tgt_len,
        num_core_per_host=FLAGS.num_core_per_host,
        num_hosts=FLAGS.num_hosts,
        use_tpu=FLAGS.use_tpu)
    eval_bin_sizes = eval_record_info["bin_sizes"]
    num_eval_batch = eval_record_info["num_batch"]

    if FLAGS.max_eval_batch > 0:
      num_eval_batch = min(FLAGS.max_eval_batch, num_eval_batch)

    # Get eval cache function
    eval_cache_fn = get_cache_fn(FLAGS.mem_len)
    model_fn = get_model_fn(n_token, cutoffs, train_bin_sizes, eval_bin_sizes)
  else:
    eval_cache_fn = None
    model_fn = get_model_fn(n_token, cutoffs, train_bin_sizes, [])

  ##### Create estimator
  # TPU Configuration
  tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
      FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)

  per_host_input = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
  run_config = tf.contrib.tpu.RunConfig(
      cluster=tpu_cluster_resolver,
      model_dir=FLAGS.model_dir,
      session_config=tf.ConfigProto(
          allow_soft_placement=True, log_device_placement=True),
      tpu_config=tf.contrib.tpu.TPUConfig(
          iterations_per_loop=FLAGS.iterations,
          num_shards=FLAGS.num_core_per_host * FLAGS.num_hosts,
          per_host_input_for_training=per_host_input),
      keep_checkpoint_max=100000, # effectively save all checkpoints
      save_checkpoints_secs=None,
      save_checkpoints_steps=FLAGS.save_steps
  )

  # warm start
  warm_start_from = None
  if FLAGS.warm_start_path is not None:
    warm_start_from = tf.estimator.WarmStartSettings(
        ckpt_to_initialize_from=FLAGS.warm_start_path)

  # TPU Estimator
  estimator = tpu_estimator.TPUEstimator(
      model_fn=model_fn,
      train_cache_fn=train_cache_fn,
      eval_cache_fn=eval_cache_fn,
      use_tpu=FLAGS.use_tpu,
      config=run_config,
      params={"data_dir":FLAGS.data_dir, "track_mean":FLAGS.track_mean},
      train_batch_size=FLAGS.train_batch_size,
      eval_batch_size=FLAGS.eval_batch_size,
      warm_start_from=warm_start_from)

  if FLAGS.do_eval_only:
    if FLAGS.eval_ckpt_path is not None:
      ret = estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch,
                               checkpoint_path=FLAGS.eval_ckpt_path)
      tf.logging.info("=" * 200)
      log_str = "Eval results | "
      for key, val in ret.items():
        log_str += "{} {} | ".format(key, val)
      tf.logging.info(log_str)
      tf.logging.info("=" * 200)
    else:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.model_dir)
      eval_results = []
      for eval_checkpoint in ckpt_state.all_model_checkpoint_paths:
        if not exists(eval_checkpoint + ".index"): continue
        global_step = int(eval_checkpoint.split("-")[-1])
        if global_step < FLAGS.start_eval_steps or global_step > FLAGS.train_steps:
          continue
        ret = estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch,
                                 checkpoint_path=eval_checkpoint)
        eval_results.append(ret)

      eval_results.sort(key = lambda x: x["perplexity"])

      tf.logging.info("=" * 200)
      log_str = "Best results | "
      for key, val in eval_results[0].items():
        log_str += "{} {} | ".format(key, val)
      tf.logging.info(log_str)
      tf.logging.info("=" * 200)
  else:
    if not FLAGS.do_eval:
      estimator.train(input_fn=train_input_fn, steps=FLAGS.train_steps)
    else:
      for step in range(0, FLAGS.train_steps, num_train_batch):
        train_steps = min(FLAGS.train_steps - step, num_train_batch)
        estimator.train(input_fn=train_input_fn, steps=train_steps)
        estimator.evaluate(input_fn=eval_input_fn, steps=num_eval_batch)


if __name__ == "__main__":
  tf.app.run()