moe_comm_kernel.cu 5.39 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#include "moe_cuda_kernel.h"

#include <cstdio>
#include <iostream>
#include <vector>

#include <cuda.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <helper_cuda.h> 
#include <c10/cuda/CUDAGuard.h>

#include "cuda_stream_manager.h"

#ifdef MOE_USE_NCCL
#include <mpi.h>
#include <nccl.h>

void moe_cuda_expert_exchange_impl(
		const int* local_expert_count, 
		int* global_expert_count, 
		int* fwd_expert_count, 
		int num_expert, int world_size) {
	MPI_Alltoall(local_expert_count, num_expert, MPI_INT, 
			global_expert_count, num_expert, MPI_INT, MPI_COMM_WORLD);
	for (int i = 0; i < num_expert; ++i) {
		for (int j = 0; j < world_size; ++j) {
			fwd_expert_count[i] += global_expert_count[i + j * num_expert];
		}
	}
}

std::vector<torch::Tensor> moe_cuda_expert_exchange(
		torch::Tensor local_expert_count,
		long num_expert, long n_workers) {
    auto global_expert_count = torch::empty_like(local_expert_count);
	auto fwe_options = torch::TensorOptions()
		.dtype(local_expert_count.dtype());
    auto fwd_expert_count = torch::zeros({num_expert}, fwe_options);
	moe_cuda_expert_exchange_impl(
			local_expert_count.data_ptr<int>(),
			global_expert_count.data_ptr<int>(),
			fwd_expert_count.data_ptr<int>(),
			num_expert, n_workers);
	return {global_expert_count, fwd_expert_count};
}

template<typename scalar_t>
void moe_cuda_global_scatter_impl(
	const scalar_t* local_input_buf,
	const int* local_expert_count,
	const int* global_expert_count,
	scalar_t* input_buf,
	size_t in_feat, size_t num_expert, size_t world_size,
	CudaStreamManager* smgr) {
	// assert world_size > 1
	int recv_ptr = 0;
	/* TODO: may save for backward */
	int *expert_ptr = new int[num_expert * world_size];
	expert_ptr[0] = 0;
	for (int i = 1; i < num_expert * world_size; ++i) {
		expert_ptr[i] = expert_ptr[i - 1] + local_expert_count[i - 1];
	}

	for (int i = 0; i < num_expert; ++i) {
		NCCL_SAFE_CALL(ncclGroupStart());
		for (int j = 0; j < world_size; ++j) {
			int idx = i + j * num_expert;
			if (local_expert_count[idx]) {
				NCCL_SAFE_CALL(ncclSend(
						local_input_buf + expert_ptr[idx] * in_feat, 
						local_expert_count[idx] * in_feat * sizeof(scalar_t),
						ncclChar, 
						j,
						smgr->ncclcomm,
						smgr->stream(0)));
			}
			if (global_expert_count[idx]) {
				NCCL_SAFE_CALL(ncclRecv(
						input_buf + recv_ptr * in_feat,
						global_expert_count[idx] * in_feat * sizeof(scalar_t),
						ncclChar,
						j,
						smgr->ncclcomm,
						smgr->stream(0)));
				recv_ptr += global_expert_count[idx];
			}
		}
		NCCL_SAFE_CALL(ncclGroupEnd());
	}
	delete [] expert_ptr;
	smgr->sync(1);
}

std::vector<torch::Tensor> moe_cuda_global_scatter(
		torch::Tensor input_buf,
		torch::Tensor local_expert_count,
		torch::Tensor global_expert_count,
		long batch_size, long n_workers) {
	auto num_expert = local_expert_count.size(0) / n_workers;
	auto in_feat = input_buf.size(1);
    auto global_input_buf = input_buf.new_empty({batch_size, in_feat});
	auto smgr = getCudaStreamManager(input_buf.device().index());

    AT_DISPATCH_FLOATING_TYPES(input_buf.scalar_type(), 
			"moe_cuda_global_scatter", ([&] {
		moe_cuda_global_scatter_impl<scalar_t>(
			input_buf.data_ptr<scalar_t>(),
			local_expert_count.data_ptr<int>(),
			global_expert_count.data_ptr<int>(),
			global_input_buf.data_ptr<scalar_t>(),
			in_feat, num_expert, n_workers,
			smgr
		);
	}));
	return {global_input_buf,};
}

template<typename scalar_t>
void moe_cuda_global_gather_impl(
	const scalar_t* output_buf,
	const int* local_expert_count,
	const int* global_expert_count,
	scalar_t* local_output_buf,
	size_t out_feat, size_t num_expert, size_t world_size,
	CudaStreamManager* smgr) {
	int send_ptr = 0;
	/* TODO: may save for backward */
	int *expert_ptr = new int[num_expert * world_size];
	expert_ptr[0] = 0;
	for (int i = 1; i < num_expert * world_size; ++i) {
		expert_ptr[i] = expert_ptr[i - 1] + local_expert_count[i - 1];
	}

	for (int i = 0; i < num_expert; ++i) {
		NCCL_SAFE_CALL(ncclGroupStart());
		for (int j = 0; j < world_size; ++j) {
			int idx = i + j * num_expert;
			if (global_expert_count[idx]) {
				NCCL_SAFE_CALL(ncclSend(
						output_buf + send_ptr * out_feat,
						global_expert_count[idx] * out_feat * sizeof(scalar_t),
						ncclChar,
						j,
						smgr->ncclcomm,
						smgr->stream(0)));
				send_ptr += global_expert_count[idx];
			}
			if (local_expert_count[idx]) {
				NCCL_SAFE_CALL(ncclRecv(
						local_output_buf + expert_ptr[idx] * out_feat, 
						local_expert_count[idx] * out_feat * sizeof(scalar_t),
						ncclChar, 
						j,
						smgr->ncclcomm,
						smgr->stream(0)));
			}
		}
		NCCL_SAFE_CALL(ncclGroupEnd());
	}
	delete [] expert_ptr;
	smgr->sync(1);
}

std::vector<torch::Tensor> moe_cuda_global_gather(
		torch::Tensor output_buf,
		torch::Tensor local_expert_count,
		torch::Tensor global_expert_count,
		long batch_size, long n_workers) {
	auto num_expert = local_expert_count.size(0) / n_workers;
	auto out_feat = output_buf.size(1);
    auto local_output_buf = output_buf.new_empty({batch_size, out_feat});
	auto smgr = getCudaStreamManager(output_buf.device().index());

    AT_DISPATCH_FLOATING_TYPES(output_buf.scalar_type(), 
			"moe_cuda_global_gather", ([&] {
		moe_cuda_global_gather_impl<scalar_t>(
			output_buf.data_ptr<scalar_t>(),
			local_expert_count.data_ptr<int>(),
			global_expert_count.data_ptr<int>(),
			local_output_buf.data_ptr<scalar_t>(),
			out_feat, num_expert, n_workers,
			smgr
		);
	}));
	return {local_output_buf,};
}

#endif