moe_test.py 1.56 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
from moe import MOELayer, MOELayer_raw
Rick Ho's avatar
Rick Ho committed
2
3
import torch
import time
Rick Ho's avatar
Rick Ho committed
4
import sys
Rick Ho's avatar
Rick Ho committed
5
6
7


def perf():
Rick Ho's avatar
Rick Ho committed
8
9
10
    torch.manual_seed(42 + torch.distributed.get_rank())
    torch.cuda.manual_seed(42 + torch.distributed.get_rank())
    
Rick Ho's avatar
Rick Ho committed
11
    batch_size = int(sys.argv[1])
Rick Ho's avatar
Rick Ho committed
12
13
    io_feat = int(sys.argv[2])
    hidden_feat = int(sys.argv[3])
Rick Ho's avatar
Rick Ho committed
14
    num_expert = int(sys.argv[4])
Rick Ho's avatar
Rick Ho committed
15

Rick Ho's avatar
Rick Ho committed
16
    inp = torch.rand(batch_size, io_feat).cuda()
Rick Ho's avatar
Rick Ho committed
17
18
19
    gate = torch.randint(low=0, 
            high=num_expert * torch.distributed.get_world_size(), 
            size=(batch_size, ), requires_grad=False).int().cuda()
Rick Ho's avatar
Rick Ho committed
20

Rick Ho's avatar
Rick Ho committed
21
    moe = MOELayer(num_expert, io_feat, hidden_feat, io_feat).cuda()
Rick Ho's avatar
Rick Ho committed
22

Rick Ho's avatar
Rick Ho committed
23
24
25
26
27
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
Rick Ho's avatar
Rick Ho committed
28
29
30
31
    o = moe(inp, gate)

    n_runs = 16
    tott = 0.
Rick Ho's avatar
Rick Ho committed
32
33
    maxt = 0.
    sqtot = 0.
Rick Ho's avatar
Rick Ho committed
34
35
36
37
38
39
    for i in range(n_runs):
        gate = torch.randint(low=0, high=num_expert, size=(batch_size, ), requires_grad=False).int().cuda()
        ts = time.time()
        o = moe(inp, gate)
        te = time.time()
        tott += te - ts
Rick Ho's avatar
Rick Ho committed
40
41
        sqtot += (te - ts)**2
        maxt = max(maxt, te - ts)
Rick Ho's avatar
Rick Ho committed
42

Rick Ho's avatar
Rick Ho committed
43
    gflops = 2e-9 * n_runs * io_feat * hidden_feat * 2 * batch_size / tott
Rick Ho's avatar
Rick Ho committed
44
45
46
    print('Time mean/max/stdev {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs'.format(
        tott * 1e3 / n_runs, maxt * 1e3, 
        (sqtot / n_runs - (tott / n_runs)**2) * 1e3 / n_runs, gflops))
Rick Ho's avatar
Rick Ho committed
47
48
49


if __name__ == '__main__':
Rick Ho's avatar
Rick Ho committed
50
51
    torch.distributed.init_process_group(backend='mpi')
    # print('{} / {}'.format(torch.distributed.get_rank(), torch.distributed.get_world_size()))
Rick Ho's avatar
Rick Ho committed
52
    perf()