test_ddp.py 4.7 KB
Newer Older
1
import json
Rick Ho's avatar
Rick Ho committed
2
import random
3
4
5
import os
import sys
from typing import Dict
Rick Ho's avatar
Rick Ho committed
6
import random
7
8
9

import pytest
import torch
Rick Ho's avatar
Rick Ho committed
10
import torch.distributed as dist
11
12
13

from test_numerical import test_fmoe as _test_fmoe
from test_numerical import test_fmoe_linear as _test_fmoe_linear
14
from test_numerical import _test_fmoe_local_ddp
15
16


Rick Ho's avatar
Rick Ho committed
17
def _ensure_initialized():
Rick Ho's avatar
Rick Ho committed
18
    if 'RANK' not in os.environ:
Rick Ho's avatar
Rick Ho committed
19
20
21
22
        os.environ["RANK"] = os.environ.get("OMPI_COMM_WORLD_RANK", "0")
        os.environ["WORLD_SIZE"] = os.environ.get("OMPI_COMM_WORLD_SIZE", "1")
        os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["RANK"]
        os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost")
Rick Ho's avatar
Rick Ho committed
23
    if not dist.is_initialized():
Rick Ho's avatar
Rick Ho committed
24
25
26
        dist.init_process_group(backend="nccl")


Rick Ho's avatar
Rick Ho committed
27
28
29
30
def _run_distributed(func, world_size, args: Dict, script=__file__, env=dict()):
    device_count = torch.cuda.device_count()
    if device_count < world_size:
        pytest.skip("No enough GPU, only {} found".format(device_count))
31
32
33
    import subprocess
    import os

34
    ps = []
Rick Ho's avatar
Rick Ho committed
35
36
37
    env["MASTER_ADDR"] = "localhost"
    env["MASTER_PORT"] = str(random.randint(50000, 60000))
    env["OMPI_COMM_WORLD_SIZE"] = str(world_size)
Rick Ho's avatar
Rick Ho committed
38
    env["LD_LIBRARY_PATH"] = os.environ.get("LD_LIBRARY_PATH")
39

40
    for i in range(world_size):
Rick Ho's avatar
Rick Ho committed
41
        env["OMPI_COMM_WORLD_RANK"] = str(i)
42
        p = subprocess.Popen(
Rick Ho's avatar
Rick Ho committed
43
44
45
            [sys.executable, script, func, json.dumps(args)],
            stdout=subprocess.PIPE,
            env=env
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        )
        ps.append(p)

    for p in ps:
        p.wait()
        retc = p.poll()
        assert retc == 0


@pytest.mark.parametrize("num_expert", [4, 8])
@pytest.mark.parametrize("top_k", [2])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("d_model", [16])
@pytest.mark.parametrize("d_hidden", [32])
60
@pytest.mark.parametrize("mp_size", [1, 2])
Rich Ho's avatar
Rich Ho committed
61
@pytest.mark.parametrize("data_type", ['torch.FloatTensor', 'torch.DoubleTensor', 'torch.HalfTensor'])
62
def test_fmoe_linear_distributed(
Rich Ho's avatar
Rich Ho committed
63
    num_expert, top_k, batch_size, d_model, d_hidden, mp_size, data_type
64
65
66
):
    _run_distributed(
        "_test_fmoe_linear",
67
        mp_size * 2,
68
69
70
71
72
73
        {
            "num_expert": num_expert,
            "top_k": top_k,
            "batch_size": batch_size,
            "d_model": d_model,
            "d_hidden": d_hidden,
74
            "mp_size": mp_size,
Rich Ho's avatar
Rich Ho committed
75
            "data_type": data_type
76
77
78
79
80
81
82
83
84
        },
    )


@pytest.mark.parametrize("num_expert", [4, 8])
@pytest.mark.parametrize("top_k", [2])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("d_model", [16])
@pytest.mark.parametrize("expert", ["NaiveExpert", "LinearExpert"])
85
86
@pytest.mark.parametrize("mp_size", [1, 2])
def test_fmoe_distributed(num_expert, top_k, batch_size, d_model, expert, mp_size):
87
88
    _run_distributed(
        "_test_fmoe",
89
        mp_size * 2,
90
91
92
93
94
95
        {
            "num_expert": num_expert,
            "top_k": top_k,
            "batch_size": batch_size,
            "d_model": d_model,
            "expert": expert,
96
            "mp_size": mp_size,
97
98
99
100
        },
    )


101
102
103
104
105
106
107
@pytest.mark.parametrize("mp_size", [1, 2])
def test_fmoe_local_ddp(mp_size):
    _run_distributed(
        _test_fmoe_local_ddp.__name__, mp_size * 2, {"mp_size": mp_size},
    )


108
109
110
111
112
113
114
115
116
if __name__ == "__main__":
    if len(sys.argv) >= 3:
        args = json.loads(sys.argv[2])
        os.environ["RANK"] = os.environ.get("OMPI_COMM_WORLD_RANK", "0")
        os.environ["WORLD_SIZE"] = os.environ.get("OMPI_COMM_WORLD_SIZE", "1")
        os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["RANK"]
        torch.distributed.init_process_group(backend="nccl")
        args["rank"] = torch.distributed.get_rank()
        args["world_size"] = torch.distributed.get_world_size()
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        args["mp_group"] = [
            torch.distributed.new_group(
                ranks=[j * args["mp_size"] + i for i in range(args["mp_size"])],
                backend="nccl",
            )
            for j in range(args["world_size"] // args["mp_size"])
        ][args["rank"] // args["mp_size"]]
        args["dp_group"] = [
            torch.distributed.new_group(
                ranks=[
                    i * args["mp_size"] + j
                    for i in range(args["world_size"] // args["mp_size"])
                ],
                backend="nccl",
            )
            for j in range(args["mp_size"])
        ][args["rank"] % args["mp_size"]]
        args["world_group"] = torch.distributed.new_group(
            ranks=list(range(args["world_size"])), backend="nccl",
136
137
        )
        del args["mp_size"]
138
        locals()[sys.argv[1]](**args)
139
    else:
140
        test_fmoe_local_ddp(mp_size=2)
141
        test_fmoe_linear_distributed(
Rich Ho's avatar
Rich Ho committed
142
143
            num_expert=4, top_k=2, batch_size=4, d_model=8, d_hidden=8, mp_size=2,
            data_type="torch.HalfTensor"
144
        )