smart_schedule.cpp 3.24 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
#ifdef FMOE_USE_NCCL

#include <cstdlib>
#include <vector>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>

#include "smart_schedule.h"

long pipeline_gran = -1;

Rick Ho's avatar
Rick Ho committed
12
std::vector<torch::Tensor> _smart_sch_forward(
Rick Ho's avatar
Rick Ho committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
        torch::Tensor input_buf,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        torch::Tensor stored_models,
        long global_batch_size,
        long n_workers,
        py::function forward_fn) {
    if (pipeline_gran == -1) {
        char* p = getenv("FMOE_FASTER_GROUP_SIZE");
        if (p) {
            pipeline_gran = atoi(p);
        } else {
            pipeline_gran = 4;
        }
    }

    auto smgr = getCudaStreamManager(input_buf.device().index());
    int rank;
    NCCL_SAFE_CALL(ncclCommUserRank(smgr->ncclcomm, &rank));

    const auto num_expert = local_expert_count.size(0) / n_workers;
    const auto d_model = input_buf.size(1);

Rick Ho's avatar
Rick Ho committed
36
    // TODO: maybe empty is faster
Rick Ho's avatar
Rick Ho committed
37
38
39
40
41
42
    auto global_input_buf = input_buf.new_zeros({global_batch_size, d_model});
    auto global_output_buf = input_buf.new_zeros({global_batch_size, d_model});
    
    auto output_buf = input_buf.new_zeros({input_buf.size(0), d_model});

    AT_DISPATCH_FLOATING_TYPES_AND_HALF(input_buf.scalar_type(), 
Rick Ho's avatar
Rick Ho committed
43
            "fmoe_cuda_smart_sch_forward", ([&] {
Rick Ho's avatar
Rick Ho committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        fmoe_cuda_fused_forward_impl(
            forward_fn,
            input_buf.device(),

            input_buf.data_ptr<scalar_t>(),
            global_input_buf.data_ptr<scalar_t>(),
            global_output_buf.data_ptr<scalar_t>(),
            output_buf.data_ptr<scalar_t>(),

            local_expert_count.data_ptr<long>(),
            global_expert_count.data_ptr<long>(),
            stored_models.data_ptr<bool>(),
            d_model, num_expert, rank, n_workers,
            pipeline_gran, smgr);
    }));
Rick Ho's avatar
Rick Ho committed
59
    return {output_buf, global_input_buf};
Rick Ho's avatar
Rick Ho committed
60
61
}

Rick Ho's avatar
Rick Ho committed
62
torch::Tensor _smart_sch_backward(
Rick Ho's avatar
Rick Ho committed
63
64
65
66
67
        torch::Tensor grad_out,
        torch::Tensor local_expert_count,
        torch::Tensor global_expert_count,
        torch::Tensor stored_models,
        long buf_batch_size,
Rick Ho's avatar
Rick Ho committed
68
69
70
        long global_batch_size,
        long n_workers,
        py::function backward_fn) {
Rick Ho's avatar
Rick Ho committed
71
    const auto num_expert = local_expert_count.size(0) / n_workers;
Rick Ho's avatar
Rick Ho committed
72
    auto smgr = getCudaStreamManager(grad_out.device().index());
Rick Ho's avatar
Rick Ho committed
73
74
    int rank;
    ncclCommUserRank(smgr->ncclcomm, &rank);
Rick Ho's avatar
Rick Ho committed
75
76
77
78
    const auto d_model = grad_out.size(1);
    auto global_grad_out = grad_out.new_zeros({global_batch_size, d_model});
    auto global_grad_in = grad_out.new_zeros({global_batch_size, d_model});
    auto grad_in = grad_out.new_zeros({buf_batch_size, d_model});
Rick Ho's avatar
Rick Ho committed
79

Rick Ho's avatar
Rick Ho committed
80
81
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad_out.scalar_type(), 
            "fmoe_cuda_smartsch_backward", ([&] {
Rick Ho's avatar
Rick Ho committed
82
        fmoe_cuda_fused_backward_impl(
Rick Ho's avatar
Rick Ho committed
83
84
            backward_fn,
            grad_out.device(),
Rick Ho's avatar
Rick Ho committed
85
86
87
88
89
90
91
92
93

            grad_out.data_ptr<scalar_t>(),
            global_grad_out.data_ptr<scalar_t>(),
            global_grad_in.data_ptr<scalar_t>(),
            grad_in.data_ptr<scalar_t>(),

            local_expert_count.data_ptr<long>(),
            global_expert_count.data_ptr<long>(),
            stored_models.data_ptr<bool>(),
Rick Ho's avatar
Rick Ho committed
94
            d_model, num_expert, rank, n_workers,
Rick Ho's avatar
Rick Ho committed
95
96
97
98
99
100
            pipeline_gran, smgr);
    }));
    return {grad_in,};
}
#endif