moe_test.py 1.49 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
from moe import MOELayer
import torch
import time
Rick Ho's avatar
Rick Ho committed
4
import sys
Rick Ho's avatar
Rick Ho committed
5
6


Rick Ho's avatar
Rick Ho committed
7
8
9
dev_name = 'cuda:0'


Rick Ho's avatar
Rick Ho committed
10
def perf():
Rick Ho's avatar
Rick Ho committed
11
    batch_size = int(sys.argv[1])
Rick Ho's avatar
Rick Ho committed
12
13
    in_feat = int(sys.argv[2])
    out_feat = int(sys.argv[3])
Rick Ho's avatar
Rick Ho committed
14
    num_expert = int(sys.argv[4])
Rick Ho's avatar
Rick Ho committed
15
16


17
    inp = torch.rand(batch_size, in_feat, requires_grad=True).cuda(dev_name)
Rick Ho's avatar
Rick Ho committed
18
19
    gate = torch.randint(low=0, high=num_expert, size=(batch_size, ), 
            requires_grad=False).int().cuda(dev_name)
Rick Ho's avatar
Rick Ho committed
20

Rick Ho's avatar
Rick Ho committed
21
    moe = MOELayer(num_expert, in_feat, out_feat).cuda(dev_name)
22
    moe.train()
Rick Ho's avatar
Rick Ho committed
23

Rick Ho's avatar
Rick Ho committed
24
25
26
27
28
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
    o = moe(inp, gate)
Rick Ho's avatar
Rick Ho committed
29
30
31
32
    o = moe(inp, gate)

    n_runs = 16
    tott = 0.
33
    backt = 0.
Rick Ho's avatar
Rick Ho committed
34
35
    maxt = 0.
    sqtot = 0.
Rick Ho's avatar
Rick Ho committed
36
    for i in range(n_runs):
Rick Ho's avatar
Rick Ho committed
37
38
        gate = torch.randint(low=0, high=num_expert, size=(batch_size, ), 
                requires_grad=False).int().cuda(dev_name)
Rick Ho's avatar
Rick Ho committed
39
40
41
        ts = time.time()
        o = moe(inp, gate)
        te = time.time()
42
43
44
45
46
47
48

        loss = o.sum()

        bts = time.time()
        loss.backward()
        bte = time.time()

Rick Ho's avatar
Rick Ho committed
49
        tott += te - ts
Rick Ho's avatar
Rick Ho committed
50
51
        sqtot += (te - ts)**2
        maxt = max(maxt, te - ts)
52
        backt = bte - bts
Rick Ho's avatar
Rick Ho committed
53

Rick Ho's avatar
Rick Ho committed
54
    gflops = 2e-9 * n_runs * in_feat * out_feat * batch_size / tott
55
    print('Time mean/max/stdev/back {:.3f} {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs'.format(
Rick Ho's avatar
Rick Ho committed
56
        tott * 1e3 / n_runs, maxt * 1e3, 
57
58
        (sqtot / n_runs - (tott / n_runs)**2) * 1e3 / n_runs, 
        backt * 1e3 / n_runs, gflops))
Rick Ho's avatar
Rick Ho committed
59
60
61
62


if __name__ == '__main__':
    perf()