smart_schedule.h 15.5 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#ifndef SMART_SCHEDULE_H
#define SMART_SCHEDULE_H

#include <cstdio>
#include <iostream>
#include <vector>

#include <cuda.h>
#include <cuda_runtime.h>
#include <nccl.h>

#include "../stream_manager.h"

Rick Ho's avatar
Rick Ho committed
14
15
16
17
18
#if defined(CUDA_VERSION) && (CUDA_VERSION < 110010)
#define FMOE_SWE(__s__,__e__) cudaStreamWaitEvent(__s__,__e__,0)
#else
#define FMOE_SWE(__s__,__e__) cudaStreamWaitEvent(__s__,__e__)
#endif
Rick Ho's avatar
Rick Ho committed
19
20

template<typename scalar_t>
Rick Ho's avatar
Rick Ho committed
21
void exchangeWith(
Rick Ho's avatar
Rick Ho committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
        const scalar_t* sendbuf, size_t sendcount, int t_send,
        scalar_t* recvbuf, size_t recvcount, int t_recv,
        long d_model,
        cudaStream_t stream, ncclComm_t comm) {
    if (sendcount) {
        ncclSend(sendbuf, sendcount * d_model * sizeof(scalar_t),
                ncclChar, t_send , comm, stream);
    }
    if (recvcount) {
        ncclRecv(recvbuf, recvcount * d_model * sizeof(scalar_t),
                ncclChar, t_recv, comm, stream);
    }
}


#define GEN_BASE(_step) \
    long to_base = (group_rank + _step) % n_groups * pipeline_gran; \
    long from_base = (group_rank + n_groups - _step) % n_groups * pipeline_gran;
#define GEN_IDX \
    int idx_send = ei + rank_send * num_expert; \
    int idx_recv = ei + rank_recv * num_expert; \
    int gidx_send = ei * world_size + rank_send; \
    int gidx_recv = ei * world_size + rank_recv; \
    int idx_self = ei +      rank * num_expert;

Rick Ho's avatar
Rick Ho committed
47

Rick Ho's avatar
Rick Ho committed
48
49
50
void computePtrs(long num_expert, long rank, long world_size,
        const long* local_expert_count,
        const long* global_expert_count,
Rick Ho's avatar
Rick Ho committed
51
52
53
54
55
        const bool* stored_models,
        int *local_ptr,
        int *global_ptr,
        int *local_global_ptr) {
    local_ptr[0] = global_ptr[0] = local_global_ptr[0] = 0;
Rick Ho's avatar
Rick Ho committed
56

Rick Ho's avatar
Rick Ho committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    for (int i = 0; i < num_expert * world_size; ++i) {
        local_ptr[i + 1] = local_ptr[i] + local_expert_count[i];

        local_global_ptr[i + 1] = local_global_ptr[i];
        // if model fetched, add local tokens
        if (stored_models[i]){
            local_global_ptr[i + 1] += local_expert_count[i];
        }

        auto expert_idx = i % num_expert;
        auto worker_idx = i / num_expert;
        auto gp_idx = expert_idx * world_size + worker_idx;
        // if local model wasn't fetched, receive global tokens
        if (stored_models[rank * num_expert + expert_idx]) {
            global_ptr[gp_idx + 1] = 0;
        } else {
            global_ptr[gp_idx + 1] = global_expert_count[i];
        }
    }
    global_ptr[0] = 0;
    for (int i = 0; i < num_expert * world_size; ++i) {
        global_ptr[i + 1] += global_ptr[i];
    }
}

Rick Ho's avatar
Rick Ho committed
82

Rick Ho's avatar
Rick Ho committed
83
template<typename scalar_t>
Rick Ho's avatar
Rick Ho committed
84
void computeFn(py::function fn, c10::Device device,
Rick Ho's avatar
Rick Ho committed
85
        scalar_t* inp_buf, scalar_t* out_buf,
86
        long expert_idx, long store_idx, long offset, long micro_batch_size, long d_model,
87
        CudaStreamManager* smgr) {
88
89
90
    if(micro_batch_size == 0) {
        return;
    }
Rick Ho's avatar
Rick Ho committed
91
92
93
94
95
96
97
98
    auto options = torch::TensorOptions()
        .dtype(c10::CppTypeToScalarType<scalar_t>::value)
        .device(device)
        .requires_grad(true);
    auto inp = torch::from_blob(inp_buf + offset * d_model,
            {micro_batch_size, d_model}, options);
    auto oup = torch::from_blob(out_buf + offset * d_model,
            {micro_batch_size, d_model}, options);
99
    smgr->use_default = true;
100
    fn(inp, oup, expert_idx, store_idx);
101
    smgr->use_default = false;
Rick Ho's avatar
Rick Ho committed
102
103
104
105
106
107
}


template<typename scalar_t>
void fmoe_cuda_fused_forward_impl(
        py::function forward_fn,
Rick Ho's avatar
Rick Ho committed
108
109
        py::function stash_fn,
        py::function pop_fn,
Rick Ho's avatar
Rick Ho committed
110
        c10::Device device,
Rick Ho's avatar
Rick Ho committed
111
        std::vector<torch::Tensor> params,
Rick Ho's avatar
Rick Ho committed
112

Rick Ho's avatar
Rick Ho committed
113
        scalar_t* input_buf,
Rick Ho's avatar
Rick Ho committed
114
115
116
117
        scalar_t* global_input_buf,
        scalar_t* global_output_buf,
        scalar_t* output_buf,

Rick Ho's avatar
Rick Ho committed
118
119
        const long* local_expert_count,
        const long* global_expert_count,
Rick Ho's avatar
Rick Ho committed
120
121
122
        const bool* stored_models,

        long d_model,
Rick Ho's avatar
Rick Ho committed
123
        long num_expert, long rank, long world_size, long expert_size,
Rick Ho's avatar
Rick Ho committed
124
        long pipeline_gran, CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
125
    smgr->syncTorch();
Rick Ho's avatar
Rick Ho committed
126
127
128
129

    int *local_ptr = new int[num_expert * world_size + 1];
    int *global_ptr = new int[num_expert * world_size + 1];
    int *local_global_ptr = new int[num_expert * world_size + 1]; // local fetched models tracker
Rick Ho's avatar
Rick Ho committed
130
    computePtrs(num_expert, rank, world_size,
Rick Ho's avatar
Rick Ho committed
131
132
133
134
135
136
137
138
139
140
141
            local_expert_count, global_expert_count, stored_models,
            local_ptr, global_ptr, local_global_ptr);

    if (pipeline_gran > world_size) {
        pipeline_gran = world_size;
    }
    long n_groups = world_size / pipeline_gran;
    long group_rank = rank / pipeline_gran;

    cudaEvent_t *input_ready = new cudaEvent_t[n_groups];
    cudaEvent_t *output_ready = new cudaEvent_t[n_groups];
zms1999's avatar
zms1999 committed
142
    cudaEvent_t *output_torch_ready = new cudaEvent_t[n_groups];
Rick Ho's avatar
Rick Ho committed
143
144
145
    for (long i = 0; i < n_groups; ++i) {
        cudaEventCreate(input_ready + i);
        cudaEventCreate(output_ready + i);
zms1999's avatar
zms1999 committed
146
        cudaEventCreate(output_torch_ready + i);
Rick Ho's avatar
Rick Ho committed
147
148
    }

Rick Ho's avatar
Rick Ho committed
149
    // S_0 ... S_n
Rick Ho's avatar
Rick Ho committed
150
    for (long step = 0; step < n_groups; ++step) {
Rick Ho's avatar
Rick Ho committed
151
        for (long ei = 0; ei < num_expert; ++ei) {
Rick Ho's avatar
Rick Ho committed
152
153
154
155
156
157
            GEN_BASE(step);
            NCCL_SAFE_CALL(ncclGroupStart());
            for (int j = 0; j < pipeline_gran; ++j) {
                int rank_send = j + to_base;
                int rank_recv = j + from_base;
                GEN_IDX;
Rick Ho's avatar
Rick Ho committed
158
                exchangeWith(input_buf + local_ptr[idx_send] * d_model,
Rick Ho's avatar
Rick Ho committed
159
160
161
                        local_expert_count[idx_send] * !stored_models[idx_send], rank_send,
                        global_input_buf + global_ptr[gidx_recv] * d_model,
                        global_expert_count[idx_recv] * !stored_models[idx_self], rank_recv,
162
                        d_model, smgr->stream(num_expert), smgr->ncclcomm);
Rick Ho's avatar
Rick Ho committed
163
164
165
            }
            NCCL_SAFE_CALL(ncclGroupEnd());
        }
166
        cudaEventRecord(input_ready[step], smgr->stream(num_expert));
Rick Ho's avatar
Rick Ho committed
167
168
    }

Rick Ho's avatar
Rick Ho committed
169
170
171
172
173
174
175
176
177
    // Broadcast shadowed experts
    cudaEvent_t evt_get, *evt_shadow;
    if (params.size() > 0) {
        evt_shadow = new cudaEvent_t[params.size()];
    }
    for (long i = 0, si = 0; i < world_size * num_expert; ++i) {
        if (stored_models[i]) {
            if (i / num_expert == rank) {
                cudaEventCreate(&evt_get);
178
179
                cudaEventRecord(evt_get, smgr->stream(0));
                FMOE_SWE(smgr->stream(num_expert), evt_get);
Rick Ho's avatar
Rick Ho committed
180
                cudaEventDestroy(evt_get);
Rick Ho's avatar
Rick Ho committed
181
            }
Rick Ho's avatar
Rick Ho committed
182
            NCCL_SAFE_CALL(ncclBcast((void*)params[si].data_ptr<scalar_t>(),
Rick Ho's avatar
Rick Ho committed
183
                        expert_size * sizeof(scalar_t), ncclChar,
184
                        i / num_expert, smgr->ncclcomm, smgr->stream(num_expert)));
Rick Ho's avatar
Rick Ho committed
185
            cudaEventCreate(evt_shadow + si);
186
            cudaEventRecord(evt_shadow[si], smgr->stream(num_expert));
Rick Ho's avatar
Rick Ho committed
187
188
189
190
191
            ++si;
        }
    }

    // C_0 ... C_n
Rick Ho's avatar
Rick Ho committed
192
    for (long step = 0; step < n_groups; ++step) {
193
        FMOE_SWE(smgr->stream(0), input_ready[step]);
Rick Ho's avatar
Rick Ho committed
194
        FMOE_SWE(smgr->torchStream(), input_ready[step]);
Rick Ho's avatar
Rick Ho committed
195
196
197
        for (int ei = 0; ei < num_expert; ++ei) {
            GEN_BASE(step);
            long offset = global_ptr[ei * world_size + from_base];
Rick Ho's avatar
Rick Ho committed
198
            long micro_batch_size = global_ptr[ei * world_size +
Rick Ho's avatar
Rick Ho committed
199
                (from_base + pipeline_gran)] - offset;
Rick Ho's avatar
Rick Ho committed
200
            computeFn(forward_fn, device,
Rick Ho's avatar
Rick Ho committed
201
                    global_input_buf, global_output_buf,
202
                    (long) ei, step * num_expert + ei, offset, micro_batch_size, d_model, smgr);
Rick Ho's avatar
Rick Ho committed
203
        }
204
        cudaEventRecord(output_ready[step], smgr->stream(0));
Rick Ho's avatar
Rick Ho committed
205
        cudaEventRecord(output_torch_ready[step], smgr->torchStream());
Rick Ho's avatar
Rick Ho committed
206
207
    }

Rick Ho's avatar
Rick Ho committed
208
209
210
    // Compute over shadowed experts
    for (long i = 0, si = 0; i < world_size * num_expert; ++i) {
        if (stored_models[i]) {
211
            FMOE_SWE(smgr->stream(0), evt_shadow[si]);
Rick Ho's avatar
Rick Ho committed
212
            FMOE_SWE(smgr->torchStream(), evt_shadow[si]);
213
            stash_fn(params[si], si, 0); // always put shadowed expert at first, so expert_idx = 0
Rick Ho's avatar
Rick Ho committed
214
215
            long offset = local_ptr[i];
            long micro_batch_size = local_expert_count[i];
Rick Ho's avatar
Rick Ho committed
216
            computeFn(forward_fn, device,
Rick Ho's avatar
Rick Ho committed
217
                    input_buf, output_buf,
218
                    0, n_groups * num_expert + si, offset, micro_batch_size, d_model, smgr);
Rick Ho's avatar
Rick Ho committed
219
220
221
            ++si;
        }
    }
222
    pop_fn(0);
Rick Ho's avatar
Rick Ho committed
223
224

    // R_0 ... R_n
Rick Ho's avatar
Rick Ho committed
225
    for (long step = 0; step < n_groups; ++step) {
226
        FMOE_SWE(smgr->stream(num_expert), output_ready[step]);
zms1999's avatar
zms1999 committed
227
        FMOE_SWE(smgr->stream(num_expert), output_torch_ready[step]);
Rick Ho's avatar
Rick Ho committed
228
229
230
231
232
233
234
        for (int ei = 0; ei < num_expert; ++ei) {
            GEN_BASE(step);
            NCCL_SAFE_CALL(ncclGroupStart());
            for (int j = 0; j < pipeline_gran; ++j) {
                int rank_send = j + from_base;
                int rank_recv = j + to_base;
                GEN_IDX;
Rick Ho's avatar
Rick Ho committed
235
                exchangeWith(global_output_buf + global_ptr[gidx_send] * d_model,
Rick Ho's avatar
Rick Ho committed
236
237
238
                        global_expert_count[idx_send] * !stored_models[idx_self], rank_send,
                        output_buf + local_ptr[idx_recv] * d_model,
                        local_expert_count[idx_recv] * !stored_models[idx_recv], rank_recv,
239
                        d_model, smgr->stream(num_expert), smgr->ncclcomm);
Rick Ho's avatar
Rick Ho committed
240
241
242
243
            }
            NCCL_SAFE_CALL(ncclGroupEnd());
        }
    }
244
    smgr->sync(num_expert + 1);
Rick Ho's avatar
Rick Ho committed
245
246
247
248
249
250
251
252

    delete [] local_ptr;
    delete [] global_ptr;
    delete [] local_global_ptr;
    checkCudaErrors(cudaGetLastError());
    for (long i = 0; i < n_groups; ++i) {
        cudaEventDestroy(input_ready[i]);
        cudaEventDestroy(output_ready[i]);
zms1999's avatar
zms1999 committed
253
        cudaEventDestroy(output_torch_ready[i]);
Rick Ho's avatar
Rick Ho committed
254
    }
Rick Ho's avatar
Rick Ho committed
255
256
257
    for (unsigned i = 0; i < params.size(); ++i) {
        cudaEventDestroy(evt_shadow[i]);
    }
Rick Ho's avatar
Rick Ho committed
258
259
    delete [] input_ready;
    delete [] output_ready;
zms1999's avatar
zms1999 committed
260
    delete [] output_torch_ready;
Rick Ho's avatar
Rick Ho committed
261
262
263
264
265
266
}


template<typename scalar_t>
void fmoe_cuda_fused_backward_impl(
        py::function backward_fn,
Rick Ho's avatar
Rick Ho committed
267
268
269
270
        py::function stash_fn,
        py::function pop_fn,
        py::function collect_fn,
        py::function set_grad_fn,
Rick Ho's avatar
Rick Ho committed
271
        c10::Device device,
Rick Ho's avatar
Rick Ho committed
272

Rick Ho's avatar
Rick Ho committed
273
        scalar_t* grad_out,
Rick Ho's avatar
Rick Ho committed
274
275
276
277
        scalar_t* global_grad_out,
        scalar_t* global_grad_in,
        scalar_t* grad_in,

Rick Ho's avatar
Rick Ho committed
278
279
        const long* local_expert_count,
        const long* global_expert_count,
Rick Ho's avatar
Rick Ho committed
280
        const bool* stored_models,
Rick Ho's avatar
Rick Ho committed
281
        long d_model,
Rick Ho's avatar
Rick Ho committed
282
283
        long num_expert, long rank, long world_size,
        long pipeline_gran, CudaStreamManager* smgr) {
Rick Ho's avatar
Rick Ho committed
284
    smgr->syncTorch();
Rick Ho's avatar
Rick Ho committed
285
286
287
288
289

    int *local_ptr = new int[num_expert * world_size + 1];
    int *global_ptr = new int[num_expert * world_size + 1];
    int *local_global_ptr = new int[num_expert * world_size + 1]; // local fetched models tracker

Rick Ho's avatar
Rick Ho committed
290
    computePtrs(num_expert, rank, world_size,
Rick Ho's avatar
Rick Ho committed
291
292
293
294
295
296
297
298
299
300
            local_expert_count, global_expert_count, stored_models,
            local_ptr, global_ptr, local_global_ptr);
    if (pipeline_gran > world_size) {
        pipeline_gran = world_size;
    }
    long n_groups = world_size / pipeline_gran;
    long group_rank = rank / pipeline_gran;

    cudaEvent_t *input_ready = new cudaEvent_t[n_groups];
    cudaEvent_t *output_ready = new cudaEvent_t[n_groups];
zms1999's avatar
zms1999 committed
301
    cudaEvent_t *output_torch_ready = new cudaEvent_t[n_groups];
Rick Ho's avatar
Rick Ho committed
302
303
304
    for (long i = 0; i < n_groups; ++i) {
        cudaEventCreate(input_ready + i);
        cudaEventCreate(output_ready + i);
zms1999's avatar
zms1999 committed
305
        cudaEventCreate(output_torch_ready + i);
Rick Ho's avatar
Rick Ho committed
306
307
    }

Rick Ho's avatar
Rick Ho committed
308
    // S_0 ... S_n
Rick Ho's avatar
Rick Ho committed
309
310
311
312
313
314
315
316
    for (long step = 0; step < n_groups; ++step) {
        for (int ei = 0; ei < num_expert; ++ei) {
            GEN_BASE(step);
            NCCL_SAFE_CALL(ncclGroupStart());
            for (int j = 0; j < pipeline_gran; ++j) {
                int rank_send = j + to_base;
                int rank_recv = j + from_base;
                GEN_IDX;
Rick Ho's avatar
Rick Ho committed
317
                exchangeWith(grad_out + local_ptr[idx_send] * d_model,
Rick Ho's avatar
Rick Ho committed
318
319
320
                        local_expert_count[idx_send] * !stored_models[idx_send], rank_send,
                        global_grad_out + global_ptr[gidx_recv] * d_model,
                        global_expert_count[idx_recv] * !stored_models[idx_self], rank_recv,
321
                        d_model, smgr->stream(num_expert), smgr->ncclcomm);
Rick Ho's avatar
Rick Ho committed
322
323
324
            }
            NCCL_SAFE_CALL(ncclGroupEnd());
        }
325
        cudaEventRecord(input_ready[step], smgr->stream(num_expert));
Rick Ho's avatar
Rick Ho committed
326
327
    }

Rick Ho's avatar
Rick Ho committed
328
329
330
331
    // Shadowed experts backward and reduce
    cudaEvent_t *evt_reduce = new cudaEvent_t[num_expert];
    for (long i = 0, si = 0; i < world_size * num_expert; ++i) {
        if (stored_models[i]) {
332
            stash_fn(si, 0);
Rick Ho's avatar
Rick Ho committed
333
334
335
336
            long offset = local_ptr[i];
            long micro_batch_size = local_expert_count[i];
            computeFn(backward_fn, device,
                    grad_out, grad_in,
337
338
                    0, n_groups * num_expert + si, offset, micro_batch_size, d_model, smgr);
            collect_fn(si, i / num_expert, 0);
Rick Ho's avatar
Rick Ho committed
339
340
            if (i / num_expert == rank) {
                cudaEventCreate(evt_reduce + i % num_expert);
341
                cudaEventRecord(evt_reduce[i % num_expert], smgr->stream(num_expert));
Rick Ho's avatar
Rick Ho committed
342
343
344
345
            }
            ++si;
        }
    }
346
    pop_fn(0);
Rick Ho's avatar
Rick Ho committed
347
348

    // C_0 ... C_n
Rick Ho's avatar
Rick Ho committed
349
    for (long step = 0; step < n_groups; ++step) {
350
        FMOE_SWE(smgr->stream(0), input_ready[step]);
Rick Ho's avatar
Rick Ho committed
351
        FMOE_SWE(smgr->torchStream(), input_ready[step]);
Rick Ho's avatar
Rick Ho committed
352
353
354
        for (int ei = 0; ei < num_expert; ++ei) {
            GEN_BASE(step);
            long offset = global_ptr[ei * world_size + from_base];
Rick Ho's avatar
Rick Ho committed
355
            long micro_batch_size = global_ptr[ei * world_size +
Rick Ho's avatar
Rick Ho committed
356
357
                (from_base + pipeline_gran)] - offset;

Rick Ho's avatar
Rick Ho committed
358
            computeFn(backward_fn, device,
Rick Ho's avatar
Rick Ho committed
359
                    global_grad_out, global_grad_in,
360
                    (long) ei, step * num_expert + ei, offset, micro_batch_size, d_model, smgr);
Rick Ho's avatar
Rick Ho committed
361
        }
362
        cudaEventRecord(output_ready[step], smgr->stream(0));
Rick Ho's avatar
Rick Ho committed
363
        cudaEventRecord(output_torch_ready[step], smgr->torchStream());
Rick Ho's avatar
Rick Ho committed
364
365
    }

Rick Ho's avatar
Rick Ho committed
366
367
368
369
    // Collect gradients for shadowed experts
    for (long i = 0, si = 0; i < world_size * num_expert; ++i) {
        if (stored_models[i]) {
            if (i / num_expert == rank) {
370
                FMOE_SWE(smgr->stream(0), evt_reduce[i % num_expert]);
Rick Ho's avatar
Rick Ho committed
371
                FMOE_SWE(smgr->torchStream(), evt_reduce[i % num_expert]);
372
                set_grad_fn(si, i % num_expert);
Rick Ho's avatar
Rick Ho committed
373
374
375
376
377
378
            }
            ++si;
        }
    }

    // R_0 ... R_n
Rick Ho's avatar
Rick Ho committed
379
    for (long step = 0; step < n_groups; ++step) {
380
        FMOE_SWE(smgr->stream(num_expert), output_ready[step]);
zms1999's avatar
zms1999 committed
381
        FMOE_SWE(smgr->stream(num_expert), output_torch_ready[step]);
Rick Ho's avatar
Rick Ho committed
382
383
384
385
386
387
388
        for (int ei = 0; ei < num_expert; ++ei) {
            GEN_BASE(step);
            NCCL_SAFE_CALL(ncclGroupStart());
            for (int j = 0; j < pipeline_gran; ++j) {
                int rank_send = j + from_base;
                int rank_recv = j + to_base;
                GEN_IDX;
Rick Ho's avatar
Rick Ho committed
389
                exchangeWith(global_grad_in + global_ptr[gidx_send] * d_model,
Rick Ho's avatar
Rick Ho committed
390
391
392
                        global_expert_count[idx_send] * !stored_models[idx_self], rank_send,
                        grad_in + local_ptr[idx_recv] * d_model,
                        local_expert_count[idx_recv] * !stored_models[idx_recv], rank_recv,
393
                        d_model, smgr->stream(num_expert), smgr->ncclcomm);
Rick Ho's avatar
Rick Ho committed
394
395
396
397
398
            }
            NCCL_SAFE_CALL(ncclGroupEnd());
        }
    }

399
    smgr->sync(num_expert + 1);
Rick Ho's avatar
Rick Ho committed
400
401
402
403
404
405
406
407
408
    checkCudaErrors(cudaGetLastError());

    delete [] local_ptr;
    delete [] global_ptr;
    delete [] local_global_ptr;
    checkCudaErrors(cudaGetLastError());
    for (long i = 0; i < n_groups; ++i) {
        cudaEventDestroy(input_ready[i]);
        cudaEventDestroy(output_ready[i]);
zms1999's avatar
zms1999 committed
409
        cudaEventDestroy(output_torch_ready[i]);
Rick Ho's avatar
Rick Ho committed
410
411
412
    }
    delete [] input_ready;
    delete [] output_ready;
zms1999's avatar
zms1999 committed
413
    delete [] output_torch_ready;
Rick Ho's avatar
Rick Ho committed
414
415
416
417
418
419
    for (long i = 0; i < num_expert; ++i) {
        if (stored_models[i + rank * num_expert]) {
            cudaEventDestroy(evt_reduce[i]);
        }
    }
    delete [] evt_reduce;
Rick Ho's avatar
Rick Ho committed
420
421
422
}

#endif  // SMART_SCHEDULE_H